Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Evolution, of hydrogen

Examples of the lader include the adsorption or desorption of species participating in the reaction or the participation of chemical reactions before or after the electron transfer step itself One such process occurs in the evolution of hydrogen from a solution of a weak acid, HA in this case, the electron transfer from the electrode to die proton in solution must be preceded by the acid dissociation reaction taking place in solution. [Pg.603]

In addition to the abnormal properties already discussed, aqueous hydrofluoric acid has the properties of a typical acid, attacking metals with the evolution of hydrogen and dissolving most metallic hydroxides and carbonates. [Pg.330]

Cadmium is a soft metal, which forms a protective coating in air, and burns only on strong heating to give the brown oxide CdO. It dissolves in acids with evolution of hydrogen ... [Pg.434]

About 150 ml. of concentrated sulphuric acid is placed in the larger funnel and 100 ml. of concentrated hydrochloric acid in the smaller separatory funnel. The latter is raised until the capillary tube is above the sulphuric acid, the capillary tube is filled with concentrated hydrochloric acid, and the stopper replaced. The rate of evolution of hydrogen chloride is controlled by regulation of the supply of hydro chloric acid this will continue until a volume of hydrochloric acid equal to that of the concentrated sulphuric acid has been used. The diluted sulphuric acid should then be removed and the apparatus recharged. The yield is 31-33 g. of hydrogen chloride per 100 ml. of concentrated hydro chloric acid. If more than an equal volume of hydrochloric acid is employed, the yield of gas decreases and continues to be formed for a tune after the stopcock has been closed. [Pg.180]

Hydrogen iodide. This gas may be conveniently prepared by allowing a solution of two parts of iodine in one part of hydriodic acid, sp. gr. 1 7 (for preparation, see Section 11,49,2), to drop on to excess of red phosphorus. The evolution of hydrogen iodide takes place in the cold when the evolution of gas slackens considerably, the mixture should be gently warmed. [Pg.182]

The reaction with sodium is by no means an infallible practical test for alcohols since, strictly speaking, it is applicable only to pure anhydrous liquids. Traces of water, present as impurities, would give an initial evolution of hydrogen, but reaction would stop after a time if an alcohol is absent furthermore, certain esters and ketones also evolve hydrogen when treated with sodium (compare Section XI,7,6). It may, however, be assumed that if no hydrogen is evolved in the test, the substance is not an alcohol. [Pg.261]

Place 0 -5 g. of 3 4 5 triiodobenzoyl chloride in a small test-tube, add 0 -25 ml. of the alcohol - ether and heat the mixture gently over a micro burner until the evolution of hydrogen chloride ceases (3-5 minutes). Pour the molten mass into 10 ml. of 20 per cent, alcohol to which crushed ice has been added. Some derivatives solidify instantly those which separate as oils change to solids in a few minutes without further manipulation. Recrystallise from rectified spirit (use 50 per cent, alcohol for esters of methyl and butyl carbitol ). [Pg.265]

The apparatus required is similar to that described for Diphenylmelhane (Section IV,4). Place a mixture of 200 g. (230 ml.) of dry benzene and 40 g. (26 ml.) of dry chloroform (1) in the flask, and add 35 g. of anhydrous aluminium chloride in portions of about 6 g. at intervals of 5 minutes with constant shaking. The reaction sets in upon the addition of the aluminium chloride and the liquid boils with the evolution of hydrogen chloride. Complete the reaction by refluxing for 30 minutes on a water bath. When cold, pour the contents of the flask very cautiously on to 250 g. of crushed ice and 10 ml. of concentrated hydrochloric acid. Separate the upper benzene layer, dry it with anhydrous calcium chloride or magnesium sulphate, and remove the benzene in a 100 ml. Claisen flask (see Fig. II, 13, 4) at atmospheric pressure. Distil the remaining oil under reduced pressure use the apparatus shown in Fig. 11,19, 1, and collect the fraction b.p. 190-215°/10 mm. separately. This is crude triphenylmethane and solidifies on cooling. Recrystallise it from about four times its weight of ethyl alcohol (2) the triphenylmethane separates in needles and melts at 92°. The yield is 30 g. [Pg.515]

I hour. Finally raise the temperature of the bath to 65-70° for a further 45 minutes or until all the bromine has disappeared (no red vapours visible) and the evolution of hydrogen bromide has almost ceased. Keep the solution of hydrogen bromide in the beaker (2). [Pg.536]

Use a 500 ml. three-necked flask equipped as in Section IV,19, but mounted on a water bath. Place 128 g. of naphthalene and 45 ml. of dry carbon tetrachloride in the flask, and 177 g. (55 ml.) of bromine in the separatory funnel. Heat the mixture to gentle boiling and run in the bromine at such a rate that little, if any, of it is carried over with the hydrogen bromide into the trap this requires about 3 hours. Warm gently, with stirring, for a further 2 hours or until the evolution of hydrogen bromide ceases. Replace the reflux condenser by a condenser set for downward distillation, stir, and distil off the carbon tetrachloride as completely as possible. Mix the residue with 8 g. of sodium... [Pg.537]

Procedure 1. Dissolve 1 g. of the compound in 5 ml. of chloroform in a test-tube and cool in ice. Add 5 ml. of chlorosulphonic acid CA UTION in handhng) dropwise and with shaking. When the initial evolution of hydrogen chloride subsides, remove the reaction mixture from the ice and, after 20 minutes, pour it into a 50 ml. beaker filled with crushed ice. Separate the chloroform layer, wash it well with water, and evaporate the solvent. Recrystallise the residual aryl sulphonyl chloride from light petroleum (b.p. 40-60°), chloroform or benzene this is not essential for conversion into the sulphonamide. [Pg.543]

Dissolve 1 0 g. of the compound in 5 ml. of dry chloroform in a dry test-tuhe, cool to 0°, and add dropwise 5g. (2-8 ml.) of redistilled chloro-sulphonic acid. When the evolution of hydrogen chloride subsides, allow the reaction mixture to stand at room temperature for 20 minutes. Pour the contents of the test-tube cautiously on to 25 g. of crushed ice contained in a small beaker. Separate the chloroform layer and wash it with a httle cold water. Add the chloroform layer, with stirring, to 10 ml. of concentrated ammonia solution. After 10 minutes, evaporate the chloroform on a water bath, cool the residue and treat it with 5 ml. of 10 per cent, sodium hydroxide solution the sulphonamide dissolves as the sodium derivative, RO.CgH4.SO,NHNa. Filter the solution to remove any insoluble matter (sulphone, etc.), acidify the filtrate with dilute hydrochloric acid, and cool in ice water. Collect the sulphonamide and recrystallise it from dilute alcohol. [Pg.672]

Dihydroxyacetophenone. Finely powder a mixture of 40 g. of dry hydroquinone diacetate (1) and 87 g. of anhydrous aluminium chloride in a glass mortar and introduce it into a 500 ml. round-bottomed flask, fitted with an air condenser protected by a calcium chloride tube and connected to a gas absorption trap (Fig. II, 8, 1). Immerse the flask in an oil bath and heat slowly so that the temperature reaches 110-120° at the end of about 30 minutes the evolution of hydrogen chloride then hegins. Raise the temperature slowly to 160-165° and maintain this temperature for 3 hours. Remove the flask from the oil bath and allow to cool. Add 280 g. of crushed ice followed by 20 ml. of concentrated hydrochloric acid in order to decompose the excess of aluminium chloride. Filter the resulting solid with suction and wash it with two 80 ml. portions of cold water. Recrystallise the crude product from 200 ml. of 95 per cent, ethanol. The 3 ield of pure 2 5-dihydroxyacetophenone, m.p. 202-203°, is 23 g. [Pg.677]

An improved yield is obtained by the following process. Add a mixture of 75 g. (70-5 ml.) of propionyl chloride and 90 g. (103 ml.) of sodium-dried A.R. benzene to a vigorously stirred suspension of 75 g. of finely-powdered anhydrous aluminium chloride in 100 ml, of dry carbon disulphide, Then introduce more of the aluminium chloride (about 15 g.) until no further evolution of hydrogen chloride occurs. The yield of propiophenone, b.p. 123°/25 mm., is about 90 g. [Pg.732]

To the cold acid chloride add 175 ml. of pure carbon disulphide, cool in ice, add 30 g, of powdered anhydrous aluminium chloride in one lot, and immediately attach a reflux condenser. When the evolution of hydrogen chloride ceases (about 5 minutes), slowly warm the mixture to the boiling point on a water bath. Reflux for 10 minutes with frequent shaking the reaction is then complete. Cool the reaction mixture to 0°, and decompose the aluminium complex by the cautious addition, with shaking, of 100 g. of crushed ice. Then add 25 ml. of concentrated hydrochloric acid, transfer to a 2 htre round-bottomed flask and steam distil, preferably in the apparatus, depicted in Fig. II, 41, 3 since the a-tetralone is only moderately volatile in steam. The carbon disulphide passes over first, then there is a definite break in the distillation, after whieh the a-tetralone distils completely in about 2 htres of distillate. [Pg.738]

Equip a 1 litre bolt-head flask with dropi)ing fuuncl and a double surface reflux condenser to the top of the latter attach a device (e.g.. Fig. II, 8, 1. c) for the absorption of the hydrogen bromide evolved. Place 100 g. (108 ml.) of dry iso-valeric acid (Section 111,80) and 12 g. of pmified red phosphorus (Section 11,50,5) in the flask. Add 255 g. (82 ml.) of dry bromine (Section 11,49,5) slowly through the dropping funnel at such a rate that little or no bromine is lost with the hydrogen bromide evolved the addition occupies 2-3 hours. Warm the reaction mixture on a water bath until the evolution of hydrogen bromide is complete and the colour of the bromine has disappeared. Pour off the liquid reaction product into a Claisen flask and distil mider the reduced pressure of a water pump. Collect the a-bromo-wo-valeryl bromide at 117-122°/25-30 mm. The yield is 150 g. [Pg.999]

Sodium, like every reactive element, is never found free in nature. Sodium is a soft, bright, silvery metal which floats on water, decomposing it with the evolution of hydrogen and the formation of the hydroxide. It may or may not ignite spontaneously on water, depending on the amount of oxide and metal exposed to the water. It normally does not ignite in air at temperatures below llSoC. [Pg.27]

As with other metals of the alkali group, it decomposes in water with the evolution of hydrogen. It catches fire spontaneously on water. Potassium and its salts impart a violet color to flames. [Pg.46]

The element has a metallic, bright silver luster. It is relatively stable in air at room temperature, and is readily attacked and dissolved, with the evolution of hydrogen, but dilute and concentrated mineral acids. The metal is soft enough to be cut with a knife and can be machined without sparking if overheating is avoided. Small amounts of impurities can greatly affect its physical properties. [Pg.191]

Urea derivadves are of general interest in medicinal chemistry. They may be obtained cither from urea itself (barbiturates, sec p. 306) or from amines and isocyanates. The latter are usually prepared from amines and phosgene under evolution of hydrogen chloride. Alkyl isocyanates are highly reactive in nucleophilic addidon reactions. Even amides, e.g. sulfonamides, are nucleophilic enough to produce urea derivatives. [Pg.301]


See other pages where Evolution, of hydrogen is mentioned: [Pg.123]    [Pg.291]    [Pg.368]    [Pg.176]    [Pg.255]    [Pg.167]    [Pg.169]    [Pg.192]    [Pg.198]    [Pg.368]    [Pg.431]    [Pg.514]    [Pg.676]    [Pg.699]    [Pg.730]    [Pg.739]    [Pg.784]    [Pg.791]    [Pg.792]    [Pg.792]    [Pg.815]    [Pg.854]    [Pg.883]    [Pg.923]    [Pg.925]    [Pg.956]    [Pg.978]    [Pg.990]    [Pg.1066]    [Pg.25]    [Pg.26]   
See also in sourсe #XX -- [ Pg.338 , Pg.407 , Pg.418 , Pg.419 , Pg.420 , Pg.421 , Pg.422 , Pg.435 ]

See also in sourсe #XX -- [ Pg.338 , Pg.407 , Pg.418 , Pg.419 , Pg.420 , Pg.421 , Pg.422 , Pg.435 ]




SEARCH



A Model of Electrochemical Hydrogen Evolution Reaction

Catalysis of hydrogen evolution

Electrocatalysis of hydrogen evolution

Electrodeposition of Metals with Hydrogen Evolution

Evolution of Hydrogen at Other Cathodes

Evolution of Hydrogen at a Silver Cathode

Hydrogen evolution

Hydrolytic evolution of hydrogen

In Situ Activation of Cathodes for Hydrogen Evolution by Electrodeposition

Kinetics of hydrogen evolution

Mechanism of hydrogen evolution

© 2024 chempedia.info