Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene oxide purification

The third key section of the process deals with ethylene oxide purification. In this section of the process, a variety of column sequences have been practiced. The scheme shown in Figure 2 is typical. The ethylene oxide-rich water streams from both the main and purge absorbers are combined, and after heat exchange are fed to the top section of a desorber where the absorbate is steam stripped. The lean water from the lower section of the desorber is virtually free of oxide, and is recirculated to the main and purge absorbers. The concentrated ethylene oxide vapor overhead is fed to the ensuing stripper for further purification. If the desorber is operated under vacuum, a compressor is required. [Pg.457]

Ethylene Oxide Purification. The main impurities ia ethylene oxide are water, carbon dioxide, and both acetaldehyde and formaldehyde. Water and carbon dioxide are removed by distillation ia columns containing only rectifying or stripping sections. Aldehydes are separated from ethylene... [Pg.459]

Another attractive commercial route to MEK is via direct oxidation of / -butenes (34—39) in a reaction analogous to the Wacker-Hoechst process for acetaldehyde production via ethylene oxidation. In the Wacker-Hoechst process the oxidation of olefins is conducted in an aqueous solution containing palladium and copper chlorides. However, unlike acetaldehyde production, / -butene oxidation has not proved commercially successflil because chlorinated butanones and butyraldehyde by-products form which both reduce yields and compHcate product purification, and also because titanium-lined equipment is required to withstand chloride corrosion. [Pg.489]

Molecular Weight. Measurement of intrinsic viscosity in water is the most commonly used method to determine the molecular weight of poly(ethylene oxide) resins. However, there are several problems associated with these measurements (86,87). The dissolved polymer is susceptible to oxidative and shear degradation, which is accelerated by filtration or dialysis. If the solution is purified by centrifiigation, precipitation of the highest molecular weight polymers can occur and the presence of residual catalyst by-products, which remain as dispersed, insoluble soHds, further compHcates purification. [Pg.343]

The manufacturing process for organo-soluble EHEC is similar to that for EC except that alkah cellulose reacts first with ethylene oxide to a low hydroxyethyl MS value of - 0.5 at a low temperature, - 50° C, followed by reaction of the ethyl chloride at a higher temperature. Additional by-products, which are removed during purification, include glycols and the reaction products of the glycols with ethyl chloride (glycol ethers). [Pg.278]

Air-Based Direct Oxidation Process. A schematic flow diagram of the air-based ethylene oxide process is shown in Figure 2. Pubhshed information on the detailed evolution of commercial ethylene oxide processes is very scanty, and Figure 2 does not necessarily correspond to the actual equipment or process employed in any modem ethylene oxide plant. Precise information regarding process technology is proprietary. However, Figure 2 does illustrate all the saUent concepts involved in the manufacturing process. The process can be conveniently divided into three primary sections reaction system, oxide recovery, and oxide purification. [Pg.456]

Ethanolamines. These are produced by the reaction of ethylene oxide and ammonia (see Alkanolamines). Approximately one-third of the production is used in detergents. Other appHcations include natural gas purification, cosmetics, metalworking, textiles, and chemical intermediates (282). [Pg.466]

Materials and Purification. Chemicals were purchased from Aldrich chemical company and used as received unless otherwise noted 1,1,1,3,3,3-hexamethyl disilazane, ethylene glycol, triphosgene, poly(ethylene oxide) (MW = 600), poly(tetramethylene oxide) (MW = 1000), poly(caprolactonediol) (MW = 530), toluene diisocyanate (TDI), anhydrous ethanol (Barker Analyzed), L-lysine monohydride (Sigma) and methylene bis-4-phenyl isocyanate (MDI) (Kodak). Ethyl ether (Barker Analyzer), triethylamine and dimethyl acetamide were respectively dried with sodium, calcium hydride and barium oxide overnight, and then distilled. Thionyl chloride and diethylphosphite were distilled before use. [Pg.142]

Most commercial products are mixtures because of the way they are manufactured. For instance many surfactant hydrophobes come from assorted products such as petroleiun alkylate cuts or triglyceride oils, with a molecular weight distribution that could be narrow or wide. Usually, a purification and separation of single isomeric species would be too costly and, in most cases, pointless. Moreover, the synthesis reactions involved in the surfactant manufacturing might be the intrinsic reason of the production of a mixture, such as in the case of polycondensation of ethylene oxide which results in an often wide spread ethylene oxide munber (EON) distribution. A residual content of some intermediates or by-products might also be a significant cause for mixture effects. [Pg.84]

This process allows the purification of glycols without the difficulties of salt separation because the manufacturing procedure is done in two discrete steps with ethylene oxide distillation prior to hydrolysis. The hydration step is either uncatalyzed at high temperatures and pressures or utilizes an acid catalyst. A U.S. Industrial Chemicals, Inc. process uses a sulfuric acid catalyst at moderate temperatures producing an aqueous solution of glycol-containing acid (9). This process requires an additional step in the purification to remove the catalyst. [Pg.358]

Materials. Trioxane (Celanese) was purified by refluxing over metallic sodium followed by distillation (b.p., 114.3°C.). Ampoules of ethylene oxide (Eastman white label) were opened immediately before use. The purity was established by mass spectrometry. Boron trifluoride dibutyl etherate (Eastman white label) was used without further purification. [Pg.377]

Two additional rather similar routes are known. Both depend upon the reaction between ethylene oxide, rather than ethylene glycol, and terephthalic acid to form the bis-HET monomer already mentioned. The difference between the two methods lies in the point where purification is done in one case, it is the crude terephthalic acid in the other, it is the bis-HET monomer. In both cases this monomer is polymerized by known procedures to form a fiber-grade polyester. The titanium dioxide delustrant is added, as might be expected, early in the polymerizing process. [Pg.461]

Glycofurol is prepared by the reaction of tetrahydrofurfuryl alcohol with ethylene oxide (followed by a special purification process in the case of Glycofurol 75). [Pg.313]


See other pages where Ethylene oxide purification is mentioned: [Pg.358]    [Pg.402]    [Pg.460]    [Pg.460]    [Pg.6]    [Pg.236]    [Pg.391]    [Pg.325]    [Pg.53]    [Pg.144]    [Pg.249]    [Pg.27]    [Pg.402]    [Pg.369]    [Pg.66]    [Pg.590]    [Pg.460]    [Pg.460]    [Pg.70]    [Pg.98]    [Pg.227]    [Pg.119]    [Pg.120]    [Pg.85]    [Pg.301]    [Pg.23]   
See also in sourсe #XX -- [ Pg.464 ]




SEARCH



Ethylene purification

Oxidative purification

© 2024 chempedia.info