Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylated isolation methods

The formation of ethyl radical in the reaction C2H6 + N2O has been confirmed by ESR using the matrix isolation method (3,18). The kinetic results and the product distribution suggest that this reaction route dominates in the oxidation of ethane on V2O5 (5) and alkali metal vanadates (6,8), and very probably in the present case too. [Pg.378]

FIGURE 3.2 The recovery of a range of volatiles by dilferent aroma isolation methods. (ETH-ethanol, PRO-propanol, BAL-butyl alcohol, OCT-octane, DEC-decane, EPR-ethyl propionate, EBU-ethyl butyrate, EVA-ethyl valerate, HEP-heptanone, ACE-acetophenone, BAC-benzylacetate, MSA-methyl sahcylate, CAR-carvone, P-ionone, MAN-methyl anthra-nUate, EMP-ethyhnethylphenylglycidate, fEU-isoeugenol.) (Adapted from Leahy, M.M., G.A. Reineccius, Analysis Volatiles Methods, Applications, Procedures, P. Schreier, Ed., de Gruyter, New York, 1984, p. 19. With permission.)... [Pg.42]

Secondary and tertiary amines are not generally prepared in the laboratory. On the technical scale methylaniline is prepared by heating a mixture of aniline hydrochloride (55 parts) and methyl alcohol (16 parts) at 120° in an autoclave. For dimethylaniline, aniline and methyl alcohol are mixed in the proportion of 80 78, 8 parts of concentrated sulphuric acid are added and the mixture heated in an autoclave at 230-235° and a pressure of 25-30 atmospheres. Ethyl- and diethyl-anihne are prepared similarly. One method of isolating pure methyl- or ethyl-aniline from the commercial product consists in converting it into the Y-nitroso derivative with nitrous acid, followed by reduction of the nitroso compound with tin and hydrochloric acid ... [Pg.562]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Acylthiophenes. Manufacturing methods introducing the carboxaldehyde group into the 2- or 5-positions of thiophene and alkylthiophenes utilise the Vilsmeier-Haack reaction. To synthesize 2-thiophenecarboxaldehyde (Table 5), a controlled addition of phosphoms oxychloride to thiophene in /V, /V- dim ethyl form am i de is carried out, causing the temperature to rise. Completion of the reaction is followed by an aqueous quench, neutralization, and solvent extraction to isolate the product. [Pg.21]

Hydroxy-B-homo-5a-cholestan-7-one acetate (54b) A solution of 3/3-hydroxy-5a-cholestan-7-one acetate (51b 5 g mp 146-148°) in dioxane-ethanol (100 ml, 1 1) is placed in a 250 ml three-necked flask equipped with a mechanical stirrer and thermometer and is cooled to 0° (iee-salt bath). Powdered potassium cyanide (7.3 g) is added portionwise with stirring. Acetic acid (8 ml) is then added dropwise with constant stirring over 30 min. The resultant mixture is stirred for 1 hr at 0° C and for an additional 2 hr at room temperature. It is then poured into ice water (200 g ice, 100 ml water) and after standing for 1 hr the precipitate is collected by filtration. The product is dissolved in ether (100 ml), the ether solution is washed with 5% sodium bicarbonate, water and dried over anhydrous sodium sulfate. The filtrate is evaporated at reduced pressure and the solid residue (5.1 g) is crystallized from ethyl acetate (30 ml) to yield 2.8 g of cyanohydrin (52b) mp 160-164° repeated crystallization from the same solvent gives a product mp 164-167°. An alternative method of isolation of the cyanohydrin is used when 100 g or larger quantities are worked up. The reaction mixture is poured directly into a mixture of ice water and sodium bicarbonate, the precipitate (mp 155-156°) is washed well with water, dried and used directly for the next step. [Pg.377]

If the refractivity of the pure tautomeric constituents is known, the composition of the equilibrium mixture can be determined. This method has been used to study, for example, the keto and enol tautomers of ethyl acetoacetate. So far it has not been applied to heterocyclic compounds in this series the isolation of the pure... [Pg.337]

An important extension of this work deals with the preparation of N-substituted l,4-dihydropyridine-3,5-diearboxylates. Tliirty examples have been deseribed (92SC3291). In most eases the reported yields (10-95%) are higher than those mentioned in the literature. Tire most signifieant results eoneern the synthesis of 1-aryl derivatives, whieh are hardly aeeessible by elassie methods. One should mention that the aminoeyelohexadiene 84 has been isolated as a by-produet when starting from ethyl A-benzylaminobut-3-enoate (Seheme 26). [Pg.211]

The synthesis of thiepins 14 was unsuccessful in the case of R1 = i-Pr,79 but if the substituents in the ortho positions to sulfur arc /erf-butyl, then thiepin 14 (R1 = t-Bu R2 = Me) can be isolated in 99% yield.80 Rearrangement of diazo compound 13 (R1 = t-Bu R2 = H), which does not contain the methyl group in position 4, catalyzed by dimeric ( y3-allyl)chloropalladium gives, however, the corresponding e.w-methylene compound. The thiepin 14 (R1 = t-Bu, R2 = H) can be obtained in low yield (13 %) by treatment of the diazo compound with anhydrous hydrogen chloride in diethyl ether at — 20 C.13 In contrast, the ethyl thiepin-3,5-or -4,5-dicarboxylates can be prepared by the palladium catalysis method in satisfying yields.81... [Pg.85]

Subsequently it was found140 that ethyl 2-alkyl-1//-azepine-1-carboxylates can be isolated from a mixture of isomeric 1//-azepines by stirring the mixture with potassium hydroxide in ethanol at room temperature. Apparently, this method, which is limited to 2-alkylated azepines, depends on the slower rate of hydrolysis (and subsequent decomposition of the resulting 1H-azepine-l-carboxylic acid) of the sterically hindered 1-(ethoxycarbonyl) group. Although the yields of l//-azepines are poor (4-7%, vide supra), the method provides access to otherwise difficult to obtain, isomerically pure 2-alkyl-1//-azepines. Under the basic hydrolysis conditions aryl 2-alkyl-l//-azepine-1-carboxylates undergo transesterification to the l-(ethoxycarbonyl) derivatives. [Pg.139]

In most cases diazonium salts are not isolated, but are converted into products by reactions that can be carried out in situ. Moreover, it is actually recommended not to isolate these salts, not even for purification purposes, as many of them have a tendency to explode. In addition, the high solubility of most diazonium salts in water makes precipitation from this medium difficult. Therefore, to obtain solid diazonium salts the recommended method for many decades was to carry out diazotizations in ethanol followed by precipitation with ether. As inorganic salts of nitrous acid are scarely soluble in ethanol, Knoevenagel recommended alkyl nitrites (ethyl or isopentyl nitrite) as diazotization reagents as long ago as 1890. Various other solvents have subsequently been used for diazotizations with alkyl nitrites (see Saunders and Allen, 1985, p. 23 ff.), but as a method for obtaining solid diazonium salts this has been superseded by the isolation of diazonium tetrafluoroborates and, to a lesser degree, of hexafluorophosphates. [Pg.25]

The potassium salt of ethyl o-nitrophenylpyruvate is prepared essentially according to the method of Wislicenus and Thoma.14 However, the isolation of ethyl o-nitrophenylpyruvate has been eliminated by liberating the ester from its potassium salt in the acetic acid used as solvent for the hydrogenation. Catalytic... [Pg.42]

Each reaction step was monitored qualitatively by TLC using hex-ane ethyl acetate as the developing solvent and quantitatively by GC. Impurity peaks were identified by GC/MS. An HPLC external standard method (Method 2) was developed and used to determine the purity of the final isolated product (RWJ-26240). The following rugged HPLC method was developed to optimize scheme 1, step 6 ... [Pg.178]


See other pages where Ethylated isolation methods is mentioned: [Pg.328]    [Pg.596]    [Pg.416]    [Pg.287]    [Pg.180]    [Pg.96]    [Pg.392]    [Pg.923]    [Pg.25]    [Pg.50]    [Pg.138]    [Pg.192]    [Pg.459]    [Pg.459]    [Pg.461]    [Pg.462]    [Pg.128]    [Pg.1247]    [Pg.11]    [Pg.99]    [Pg.15]    [Pg.182]    [Pg.341]    [Pg.21]    [Pg.441]    [Pg.22]    [Pg.77]    [Pg.359]    [Pg.360]    [Pg.392]    [Pg.923]    [Pg.76]    [Pg.729]    [Pg.154]    [Pg.442]    [Pg.675]    [Pg.20]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Isolation method

© 2024 chempedia.info