Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2- ethyl ester amines

Reaction with ammonia and amines (Sec tion 20 12) Esters react with ammonia and amines to form amides Methyl and ethyl esters are the most reactive... [Pg.849]

FIGURE 20 6 Mechanism of amide formation in the reac tion of a secondary amine with an ethyl ester... [Pg.858]

A fermented-egg product (EEP), patented as an attractive bait for synanthropic flies, has been shown to be attractive to coyotes and repeUent to deer (79). Its components are variable, with relative concentrations of 77% fatty acids, 13% bases, and 10% (primarily) neutrals composed of at least 54 volatiles such as ethyl esters, dimethyl disulfide, and 2-mercaptoethanol. Synthetic formulations have been evaluated to find a replacement for a patented fermented-egg protein product that attracts coyotes and repels deer. Ten aUphatic acids (C-2 to C-8), four amines (pentyl, hexyl, heptyl, and trimethyl), dimethyl disulfide, 2-mercaptoethanol, and 54 more volatiles (C-1 to C-5 esters of C-1 to C-8 acids) have been tested as synthetic fermented egg (SEE) (80) in approximately the same proportions that are present in EEP. Weathering was a problem that caused decreased efficacy, which suggests trials of controUed-release formulations. Eourteen repeUents have been examined against white-taU deer in Peimsylvania in choice tests when treated onto sheUed com (81). [Pg.121]

Reaction of cyanohydrins with absolute ethanol in the presence of HCl yields the ethyl esters of a-hydroxy acids (3). A/-substituted amides can be synthesized by heating a cyanohydrin and an amine in water. Thus formaldehyde cyanohydrin and P-hydroxyethylamine lead to A/- (P-hydroxyethyl)hydroxyacetamide (4). [Pg.411]

Merck and Maeder have patented the manufacture of arecaidine by loss of water from l-methyl-4-hydroxypiperidine-3-carboxylic acid. A method of producing the latter has been describd by Mannich and Veit and has been developed by Ugriumov for the production of arecaidine and arecoline. With the same objective, Dankova, Sidorova and Preobrachenski use what is substantially McElvain s process,but start by converting ethylene oxide, via the chlorohydrin and the cyanohydrin, into -chloropropionic acid. The ethyl ester of this with methylamine in benzene at 140° furnishes methylbis(2-carbethoxyethyl) amine (I) which on refluxing with sodium or sodium Moamyloxide in xylene yields l-methyl-3-carbethoxy-4-piperidone (II). The latter is reduced by sodium amalgam in dilute hydrochloric acid at 0° to l-methyl-3-carbethoxy-4-hydroxypiperidine (III) which on dehydration, and hydrolysis, yields arecaidine (IV R = H), convertible by methylation into arecoline (IV R = CH3). [Pg.11]

Constitution. Pelletierine behaves as a secondary amine and the oxygen atom of the alkaloid is present in the form of an aldehyde group, since the base yields an oxime, convertible by the action of phosphorus pentachloride into a nitrile, b.p. 104-6°/13 mm., which is hydrolysed by caustic potash in alcohol to an acid, the ethyl ester of which is Loffler and Kaim s ethyl -2-piperidylpropionate. Pelletierine is not directly oxidisable to this acid. It also yields a liquid hydrazone, b.p. 130°/20 ram., which with sodium in alcohol at 136-70° reduces to dZ-eoniine. These reactions are explained by the following formulas, in which pelletierine is represented as -2-piperidylpropionaldehyde. [Pg.56]

In the second major method of peptide synthesis the carboxyl group is activated by converting it to an active ester, usually a p-nitrophenyl ester. Recall from Section 20.12 that esters react with ammonia and amines to give fflnides. p-Nitrophenyl esters are much more reactive than methyl and ethyl esters in these reactions because p-nitrophenoxide is a better (less basic) leaving group than methoxide and ethoxide. Simply allowing the active ester and a C-protected amino acid to stand in a suitable solvent is sufficient to bring about peptide bond formation by nucleophilic acyl substitution. [Pg.1139]

Reaction of 9,10-difluoro-7-oxo-2,3-dihydro-7//-pyrido[l, 2,3- e]-1,4-ben-zothiazine-6-carboxylic acid and its ethyl ester with B(OH)3 in AC2O in the presence of ZnCl2 afforded 6-[(diacetoxyboryl)oxycarbonyl] derivative 323 (R = OAc)], which was reacted with primary and cyclic amines to give 10-amino-9-fluoro-7-carboxylic acid derivatives 324 (97MI41, 98MI30). 6-[(Difluoroboryl)oxycarbonyl derivative 323 (R = F) was obtained from ethyl 9,10-difluoro-7-oxo-2,3-dihydro-7//-pyrido[l,2,3- fe]-l,4-benzothiazine-6-carboxylate with BF3-THF complex. Reaction of 323 (R = F) and 1-methylpiperazine in DMF at 50-60 °C and subsequent acidic hydrolysis afforded 7 (97MI1). [Pg.294]

A series of pyrrolidones shows promise of being cognitionenhancing agents. One of these, amacetam 3), is synthesized readily by ester-amide exchange between ethyl 2-oxo-l-pyrroli-dineacetate U) and ]1, -di isopropyl ethyl enedi amine ( ). ... [Pg.127]

The sulfur analogue of the Hauser ortho-substitution rearrangement provides access to an arylacet-ic NSAID. Reaction of the aminobenzophenone 176 with ethyl methylthioacetate and tert-butyl hypochlorite gives the intermediate 178. The reaction probably proceeds by way of formation of the S-chlorinated sulfonium derivative 177 displacement on sulfur will lead to the salt 178. Treatment with triethylamine leads initially to the betaine 179. Electrocyelic rearrangement of that transient intermediate leads, after rearomatization, to the homoanthranilic acid 180. Internal ester-amine interchange leads then to indolone 181 [45]. The thiomethyl group is then removed with Raney niekel. Saponifieation of intermediate 182 affords bromfenac (183) [46J. [Pg.46]

Of this product, 4.5 g in 30 cc of dry isopropyl alcohol are refluxed for 16 hours with 2.5 g of (3-chloroethyl dimethyl amine. The solution is cooled and filtered clear from the solid by-product. The solvent is removed under reduced pressure on the steam bath and the residue is washed with anhydrous ether. It is dissolved in ethyl acetate from which it crystallizes. It is the hydrochloride of (3-(dimethylamino)ethyl ester of 2-phenyl-2-( 1-hy-droxycyclopentyl) ethanoic acid, melting at 134° to 136°C. [Pg.413]

Vinamidinium salts have been used for the preparation of 2,3- or 2,5-disubstituted pyrroles. Thus, reaction of sarcosine ethyl ester with 18 results in an amine-exchange reaction at the least hindered position. Anion mediated cyclization and elimination of dimethylamine leads to 19 <96T6879>. [Pg.99]

The most successful modifier is cinchonidine and its enantiomer cinchonine, but some work in expanding the repertoire of substrate/modifier/catalyst combinations has been reported (S)-(-)-l-(l-naphthyl)ethylamine or (//)-1 -(I -naphth T)eth Tamine for Pt/alumina [108,231], derivatives of cinchona alkaloid such as 10,11-dihydrocinchonidine [36,71], 2-phenyl-9-deoxy-10, 11-dihydrocinchonidine [55], and O-methyl-cinchonidine for Pt/alumina [133], ephedrine for Pd/alumina [107], (-)-dihydroapovincaminic acid ethyl ester (-)-DHVIN for Pd/TiOz [122], (-)-dihydrovinpocetine for Pt/alumina [42], chiral amines such as 1 -(1 -naphtln I)-2-(I -pyrro 1 idiny 1) ethanol, l-(9-anthracenyl)-2-(l-pyrrolidinyl)ethanol, l-(9-triptycenyl)-2-(l-pyrrol idi nyl)cthanol, (Z )-2-(l-pyrrolidinyl)-l-(l-naphthyl)ethanol for Pt/alumina [37,116], D- and L-histidine and methyl esters of d- and L-tryptophan for Pt/alumina [35], morphine alkaloids [113],... [Pg.511]

The simple primary amines of the aliphatic series, then, do not form diazo-compounds because the reaction which would le, d to their formation only occurs at a temperature at which they are destroyed. The reactivity of the NH2-group can, however, be increased by a neighbouring carbonyl group. Thus we come to the case of the esters of the a-amino-carboxylic acids and of the a-amino-ketones. The ethyl ester of glycine can be diazotised even in the cold the diazo-compound which does not decompose under these conditions undergoes stabilisation by elimination of water and change into ethyl diazoacetate ... [Pg.270]

Nechah, M., Azzi, N., Vanthuyne, N., Bertrand, M., Gastaldi, S. and Gil, G., Highly selective enzymatic kinetic resolution of primary amines at 80°C a comparative study of carboxylic acids and their ethyl esters as acyl donors. J. Org. Chem., 2007, 72, 6918-6923. [Pg.155]

However, morpholine-4-carboxylic acid 2-hydroxy-1-methyl-ethyl ester is formed by the reaction of PC and the substrate morpholine in an undesired side reaction. By use of 1.4-dioxane or the pyrrolidones as mediator s3 about 30 to 45% of the morphoUne is consumed by this side reaction. The by-product is contained in the PC phase and can not be extracted to the non-polar product phase. The selectivity to the desired amines is lowered, because of the consiunption of the morphoUne. Thus, PC has to be substituted by another polar solvent (e.g. water, methanol or ethylene glycol) in future experiments. The lactates react with the morphoUne, too resulting in the corresponding amide. Overall, the hydroaminomethylation in the TMS systems PC/dodecane/lactate results in a conversion of 1-octene of about 80%, but in selectivities to the amines of only 50 to 60%. [Pg.47]


See other pages where 2- ethyl ester amines is mentioned: [Pg.137]    [Pg.1139]    [Pg.419]    [Pg.197]    [Pg.184]    [Pg.158]    [Pg.51]    [Pg.79]    [Pg.156]    [Pg.337]    [Pg.270]    [Pg.181]    [Pg.237]    [Pg.125]    [Pg.172]    [Pg.217]    [Pg.120]    [Pg.170]    [Pg.1227]    [Pg.56]    [Pg.134]    [Pg.339]    [Pg.134]    [Pg.61]    [Pg.111]    [Pg.113]    [Pg.238]    [Pg.1116]    [Pg.401]    [Pg.128]    [Pg.11]   
See also in sourсe #XX -- [ Pg.789 ]




SEARCH



Aminal esters

Amines esters

Ester Amination

Ethyl amine

© 2024 chempedia.info