Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethyl, amine nitrate

Di-(ethanolamine)-trinitrate see Bis QJ-nitroxy-ethyl)-amine nitrate 2 B129... [Pg.555]

Angeli pioneered the concept of nucleophilic amine nitration by A-nitrating aniline with ethyl nitrate in the presence of potassium or sodium metal. In this reaction a complex anion... [Pg.202]

Cobalt(lll)dinitrobis( ethyl enedi amine) Nitrates... [Pg.167]

Thermochemical data are available (Ref 2) on the heats of combustion and formation for all five isomers, on the heats of nitration from various Dinitrotoluenes for the 23,4-, 2,4,5-, and 2,3,6-isomers, and on the heats of crystn for the 2,3,4- and 2,4,5-isomers. Data are also available (Ref 1) on the shock sensitivities of all of the isomers except 2,3,6-, and on the rates of decompn at 140° of the 23,4-, 2,4,5-, and 23,5-isomers. The detonation pressure and the temp coefficient of decompn between 140 and 180° have been measured for the 2,4,5-isomer 2,3,4- and 2,4,5-TNT form addition compds ( 7r-complexes ) at 1 1 molar ratio with several polycyclic aromatic hydrocarbons (naphthalene, acenaphthene, fluorene, phenanthrene and anthracene) (Ref 2). 2,4,5-TNT forms complexes with 4-aminozaobenzene, 4-aminoacetophenone, bis (2 hydroxy ethyl) amine, and tris (2-hydroxy-ethyl) amine (Ref 1). The first two have a 1 1 molar ratio, the third 1 2, and the fourth 2 1. Upon heating, the two 4-amino compds react with replacement of the 5-nitro group, as discussed below... [Pg.779]

AIBN = 2,2 -azobisisobutyronitrile 9-BBN = 9-borabicyclo [3.3.1]nonane Bn = benzyl BOC = f-butoxycarbonyl Bz = benzoyl CAN = ceric anunoninm nitrate Cp = cyclopenta-dienyl Cy = cyclohexyl DAST = diethylaminosnllur trifln-oride DBA = l,3-dibromo-5,5-dttnethylhydantoin DDQ = 2,3-dichloro-5,6-dicyano-l,4-benzoquinone DET = diethyl tartrate DIAD = diisopropyl acetylene dicarboxylate DIBAL-H = diisobutylalummum hydride DIPEA = diisopropyl ethyl amine DMDO = dimethyldioxirane HMPA = hexamethylphosphortriamide EDA = lithium diisopropy-lamide Ms = methylsulfonyl MOM = methoxymethyl NBS = iV-bromosuccmimide NMO = A-methylmorpholine iV-oxide PDC = pyridinium dichromate PMP = p-methoxyphenyl THP = tetrahydropyranyl TIPS = trisiso-propylsilyl TMANO = trimethylamine A-oxide TBDMS = t-butyldimethylsilyl Tf = trifluoromethanesulfonyl TMP = 2,2,6,6-tetramethylpiperidyl TMS = trimethylsilyl Ts = p-toluenesulfonyl. [Pg.3217]

In order to confirm the non-participation of the nitrate ion in this equilibrium, ethylammonium acetate (EAAc) was used as IL and the same methodology as cited above was applied, hi this experiment, only the A -(2,4-dinitrophenyl) ethyl amine was obtained as product. [Pg.356]

Barger (80) starting from phenethyl alcohol, obtained phenethyl chloride, which, when heated with dimethylamine, yielded dimethyl-phen ethyl amine. By nitration, reduction, diazotization, etc. a base identical with natural hordenine was obtained. Rosenmund (81) condensed p-methoxybenzaldehyde with nitromethane and reduced the alkoxy nitrostyrene to p-methoxyphenethylamine. With methyliodide a mixture of bases was formed from which, after demethylation with boiling hydroiodic acid, hordenine was obtained in low yield. Voswinckel (82) treated p-methoxyphenacyl chloride with dimethylamine, then demethylated and reduced to hordenine. Ehrlich and Pistschimuka (83) started from tyrosol, p-0H-C6H4-CH2CH2OH, converted it to the chloride, which, with dimethylamine gave hordenine. Further synthesis have been elaborated by Spath and Sobel (84) and by Kindler (38). Raoul (67, 69) obtained hordenine in 50 % yield, by methylating tyramine with formaldehyde and formic acid. [Pg.19]

Assimilation tests for carbon compounds use yeast nitrogen base (YNB) without carbon sources, and the assimilation test for nitrogen compounds use yeast carbon base (YCB) without assimilable nitrogen sources. For the tests described, YNB without amine acids and ammonium sulfate is used (Anonymous, 1984). Carbon sources normally examined include a number of pentoses, hexoses, disaccharides, trisaccharides, polysaccharides, alcohols, organic acids, and glycosides as specified by Yarrow (1998). Nitrogen sources commonly tested include nitrate, nitrite, ethyl-amine hydrochloride, cada-verine dihydrochloride, L-lysine, imidazole, glucosamine, creatine, and creatinine. When nitrite is used as a test compound, it is necessary to adjust the pH of the medium to 6.5 because toxic nitrous acid is formed at pH <6.0. [Pg.246]

Ethanol amine dinitrate Ethylene diamine diperchlorate Ethylene glycol dinitrate Ethyl hydroperoxide Ethyl nitrate Ethyl nitrite Ethyl perchlorate... [Pg.474]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

It is prepd by the action of methylamine on 4-chloro-l-nitrobenzene (Ref 5) by the action of methyl iodide (Ref 6), or methyl sulfate on 4-nit roaniline (Ref 7) or by the hydrolysis of 4-nitro-N-methylformanilide with hot coned aq HC1 (Ref 8). In a study of the effect of nitric acid concn on the prods of the nitration of N,N-dimethylaniline to form Tetryl, it was isolated in low yield by the action of nitric acid, d 1.046g/cc, plus Na nitrite on N,N-dimethylaniline (Ref 10). A eutectic mixt with N-ethyl-4-nitroaniline has been patented as a stabilizer for NC (Ref 12). Studies at NPF indicate that 4-nitro-N-methyl-aniline is superior to Centralite, 2-nitrodiphenyl-amine, or Acardite in stabilizing. NC Refs 1) Beil 12, 586, (295) 1125 ... [Pg.117]

A number of reagents containing oxide components are used in zeolite manufacture [19]. Silica is provided by addihon of sodium or other alkali silicate solutions, precipitated, colloidal, or fumed silica, or tetraalkylorthosihcate (alkyl = methyl, ethyl) and certain mineral silicates such as clays and kaolin. Alumina is provided as sodium aluminate, aluminum sulfate soluhon, hydrous aluminum oxides such as pseudo boehmite, aluminum nitrate, or aluminum alkoxides. Additional alkali is added as hydroxide or as halide salts, while organic amines and/or... [Pg.63]

More recently, Polish chemists have reported a synthesis of both aryl and aliphatic secondary nitramines by treating amine substrates with ethyl magnesium bromide followed by reaction with n-butyl nitrate (Equation 5.8). This method, which uses nonpolar solvents like hexane or benzene, has been used to synthesize aliphatic secondary nitramines, and At-nitro-A-methylanilines which otherwise undergo facile Bamberger rearrangement in the presence of acid. The direct nitration of At-unsubstituted arylamines usually requires the presence of an electron-withdrawing group. Reactions are retarded and yields are low for sterically hindered amines. [Pg.203]

Acetone cyanohydrin nitrate will not nitrate amines with branching on the carbon a to the nitrate group. For these substrates the use of ethyl nitrate and lithium bases is favoured. a-Aminonitriles are frequently observed as impurities under the reaction conditions because of the slow decomposition of acetone cyanohydrin nitrate to hydrogen cyanide and acetone. The need for an excess of amine during these reactions is wasteful and only practical if this component is cheap and widely available. Other cyanohydrin nitrates are less efficient N-nitrating agents. ... [Pg.204]

While nitramines are formed from the reaction of secondary amines with nitronium salts the success of the reaction depends on the basicity of the amine (Equation 5.11). Thus, amines of low to moderate basicity are A-nitrated in good yields. The nitration of more basic amines is slow and the nitrosamine is often observed as a significant by-product, a consequence of the partial reduction of the nitronium salt to the nitrosonium salt during the reaction. Increased reaction temperature is also found to increase the amount of nitrosamine formed. The amine substrate is usually used in excess to compensate for the release of the strong mineral acid formed during the reactions. Both nitronium tetrafluoroborate and the more soluble hexafluorophosphate are commonly used for A-nitrations. Solvents like acetonitrile, methylene chloride, nitromethane, dioxane, sulfolane, ethyl acetate and esters of phosphoric acid are commonly used. [Pg.205]

The efficient At-nitration of secondary amines has been achieved by transfer nitration with 4-chloro-5-methoxy-2-nitropyridazin-3-one, a reagent prepared from the nitration of the parent 4-chloro-5-methoxypyridazin-3-one with copper nitrate trihydrate in acetic anhydride. Reactions have been conducted in methylene chloride, ethyl acetate, acetonitrile and diethyl ether where yields of secondary nitramine are generally high. Homopiperazine is selectively nitrated to At-nitrohomopiperazine or At, At -dinitrohomopiperazine depending on the reaction stoichiometry. At-Nitration of primary amines or aromatic secondary amines is not achievable with this reagent. [Pg.206]


See other pages where Ethyl, amine nitrate is mentioned: [Pg.56]    [Pg.56]    [Pg.56]    [Pg.56]    [Pg.56]    [Pg.56]    [Pg.298]    [Pg.724]    [Pg.134]    [Pg.288]    [Pg.1153]    [Pg.134]    [Pg.150]    [Pg.321]    [Pg.394]    [Pg.375]    [Pg.796]    [Pg.107]    [Pg.958]    [Pg.697]    [Pg.47]    [Pg.1211]    [Pg.85]    [Pg.382]    [Pg.202]    [Pg.203]    [Pg.274]    [Pg.515]    [Pg.66]    [Pg.1302]    [Pg.205]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Amines nitration

Ethyl Nitrate

Ethyl amine

© 2024 chempedia.info