Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers anodic oxidation

The anodic oxidation of hydroquiaone ethers to quiaone ketals yields synthetically useful iatermediates that can be hydroly2ed to quiaones at the desired stage of a sequence (76). The yields of iatermediate diacetal are 83% for chlorine and 75% for bromine. [Pg.418]

The electrosynthesis of 4-methoxybenzaldehyde (anisaldehyde) from 4-methoxy-toluene by means of direct anodic oxidation is performed on an industrial scale [69]. Via an intermediate methyl ether derivative, the corresponding diacetal is obtained, which can be hydrolyzed to the target product. The different types of products - ether, diacetal, aldehyde - correspond to three distinct single oxidation steps. [Pg.545]

Electrolysis of Grignard reagents in ether produces the saturated and unsaturated hydrocarbons to be expected if the anode oxidizes a real or potential carbanion to the corresponding free radical. [Pg.176]

The transformation of 7,7-diMeO-CHT to a-, and y-tropolones is also achievable by using anodic oxidation in the key step (equation 18), namely the electrochemical oxidation of an isomeric mixture of diMeO-CHTs prepared by the thermal rearrangement of 7,7-diMeO-CHT yields a mixture of methyl ethers of ji- and y-tropolones. On the other hand, the thermal rearrangement of the ethylene acetal of tropone gives 3,4-dioxyethylene-CHT as a single product due to the difficulty of formation of other isomers, and it yields the ether of a-tropolone upon anodic oxidation. [Pg.765]

Anodic oxidation reactions have been utilized to reverse the polarity of enol ethers and to initiate radical cation cyclizations. As shown below, the ketene acetal 97 is oxidized on a... [Pg.151]

Studies on the electrochemical oxidation of silyl-substituted ethers have uncovered a rich variety of synthetic application in recent years. Since acetals, the products of the anodic oxidation in the presence of alcohols, are readily hydrolyzed to carbonyl compounds, silyl-substituted ethers can be utilized as efficient precursors of carbonyl compounds. If we consider the synthetic application of the electrooxidation of silyl-substituted ethers, the first question which must be solved is how we synthesize ethers having a silyl group at the carbon adjacent to the oxygen. We can consider either the formation of the C-C bond (Scheme 15a) or the formation of the C-O bond (Scheme 15b). The formation of the C Si bond is also effective, but this method does not seem to be useful from a view point of organic synthesis because the required starting materials are carbonyl compounds. [Pg.69]

Nitrogen compounds are also effective as nucleophiles in the anodic oxidation of silyl-substituted ethers. The electrochemical oxidation in the presence of a carbamate or a sulfonamide in dry THF or dichloromethane results in the selective cleavage of the C-Si bond and the introduction of the nitrogen nucleophile at the carbon (Scheme 21) [55]. Since a-methoxycarbamates are useful intermediates in the synthesis of nitrogen-containing compounds [44], this reaction provides useful access to such compounds. Cyclic silyl-substkuted ethers such as 2-silyltetrahydrofurans are also effective for the introduction of nitrogen nucleophiles. The anodic oxidation in the presence of a carbamate or a... [Pg.73]

Schafer reported that the electrochemical oxidation of silyl enol ethers results in the homo-coupling products. 1,4-diketones (Scheme 25) [59], A mechanism involving the dimerization of initially formed cation radical species seems to be reasonable. Another possible mechanism involves the decomposition of the cation radical by Si-O bond cleavage to give the radical species which dimerizes to form the 1,4-diketone. In the case of the anodic oxidation of allylsilanes and benzylsilanes, the radical intermediate is immediately oxidized to give the cationic species, because oxidation potentials of allyl radicals and benzyl radicals are relatively low. But in the case of a-oxoalkyl radicals, the oxidation to the cationic species seems to be retarded. Presumably, the oxidation potential of such radicals becomes more positive because of the electron-withdrawing effect of the carbonyl group. Therefore, the dimerization seems to take place preferentially. [Pg.76]

Quinone dyes, 9 503 Quinone ketals, anodic oxidation of hydroquinone ethers to, 21 264 Quinone methides, 2 209-211 Quinone Michael addition chemistry, 21 248-249, 250, 252 Quinone monoacetals, 21 251 Quinone monoimine (QMI), 19 246 Quinone oximes, formation of,... [Pg.782]

The concept of electroauxiiiaiy is quite powerful to solve these problems. The pre-introduction of a silyl group as an electroauxiliary decreases the oxidation potential of dialkyl ethers by virtue of the orbital interaction. As a matter of fact, we demonstrated that the anodic oxidation of a-silyl ether took place smoothly in methanol.30 Selective dissociation of the C-Si bond occured and the methoxy group was introduced on the carbon to which the silyl group was attached. Therefore, a-silyl ethers seemed to serve as suitable precursors for alkoxycarbenium ions in the cation pool method. [Pg.214]

Because the reduction potential of ether is usually more negative than that of halides, examples that belong to this category are rather rare. Generally, cathodic reduction of ethers is similar to that of alcohols, and nonactivated ethers are not reducible under the conditions of electroreduction. Activated ethers such as benzylic and allylic ethers are elec-trochemically reduced to a limited extent (Scheme 7) [1, 15, 16]. Reduction of epoxides is usually difficult however, electroreductive cleavage of activated epoxides to the corresponding alcohols is reported [17, 18]. The cleavage of the C—O bond of ethers is more easily accomplished in anodic oxidation than in cathodic reduction, which is stated in Chapter 6. [Pg.203]

A bromide was introduced in the reaction instead of a fluoride in performing the anodic oxidation of a-stannyl ethers in dibromomethane solvent with tetrabutyl-ammonium perchlorate as the electrolyte (Scheme 19) [28]. The bromide ion was generated by the reduction of the solvent at the cathode of an undivided cell. [Pg.347]

Similarly, anodic oxidation of bibenzyl ether in wet MeCN leads to benzaldehyde and (3) rather than to benzaldehyde and (2), since (2) in this case also undergoes EGA-catalyzed reaction with MeCN [14]. [Pg.455]

In all of the cyclization reactions, Moeller has found only a small difference between the use of alkyl and silyl enol ethers. Since both styrenes and enol ethers have similar oxidation potentials, even the styrene moiety could function as the initiator for oxidative cyclization reactions. The anodic oxidation of simple styrene type precursors leads to low yields of cyclized products so that enol ether moiety seems to be the more efficient initiator for intramolecular anodic coupling reactions [93]. [Pg.85]

Another heterocyclization is presented by Panifilow et al. Cyclic acetals and ethers are obtained by electrochemical oxidation of the terpenoid alcohol linalool 57 in methanol containing alkaline and sodium methoxide as electrolyt [102]. Anodic oxidation of the C(6)-C 7) double bond of linalool leads to the radical cation 58. In addition to direct methoxylation of the radical cation an attack on the hydroxyl group takes place. After a second one-electron oxidation and following methoxylation the regioisomeric cyclic acetal and a subsequent 1,2-hydride shift, the cyclic acetal 60 and the cyclic ether 61 are finally formed in yields of 16 and 24%, respectively (Scheme 13). As shown by Utley and co-workers bicyclic lactones 65 and 66 can be synthesized by anodic oxidation... [Pg.87]

Vinyl ether radical-cations also react in a radical substitution fashion with an adjacent electron rich benzene ring [59]. However the reaction products from simple examples such as 33 themselves readily undergo a further anodic oxidation... [Pg.44]

Azide ions are oxidised at low positive potentials and generate azide radicals. Azide radicals will add to an alkene. Thus the anodic oxidation of enol ethers in... [Pg.48]

Anodic oxidation of dialkyl ethers in methanol results in the formation of acetals [62]. Reaction is best carried out at a platinum, rather dian carbon, anode in methanol containing 10 % acetic acid with tetraethylammonium fhioroborate as... [Pg.273]

Electron donating a-substituents favour the non-Kolbe reaction but the radical intermediates in these anodic processes can be trapped during co-electrolysis with an alkanoic acid. Anodic decarboxylation of sugar uronic acids leads to formation of the radical which is very rapidly oxidised to a carbonium ion, stabilised by the adjacent ether group. However, in the presence of a tenfold excess of an alkanoic acid, the radical intermediate is trapped as the unsymmetrical coupling product [101]. Highly functionalised nucleotide derivatives such as 20 will couple successfully in the mixed Kolbe reaction [102], Other examples include the co-electrolysis of 3-oxa-alkanoic acids with an alkanoic acid [103] and the formation of 3-alkylindoles from indole-3-propanoic acid [104], Anodic oxidation of indole-3-propanoic acid alone gives no Kolbe dimer [105],... [Pg.321]

Radical cations of 2-alkylidene-l,3-dithianes can be generated electrochemically by anodic oxidation using a reticulated vitreous carbon (RVC) anode <2002TL7159>. These intermediates readily react with nucleophiles at C-1. Upon removal of the second electron, the sulfur-stabilized cations were trapped by nucleophilic solvents, such as MeOH, to furnish the final cycloaddition products. Hydroxy groups <20010L1729> and secondary amides <2005OL3553> were employed as O-nucleophiles and enol ethers as C-nucleophiles (Scheme 50) <2002JA10101>. [Pg.796]

The electrolytic oxidation of N- methoxycarbonylpiperidines provides an interesting and potentially valuable method for the functionalization of piperidine derivatives (81JA1172). Anodic oxidation of piperidine (101) gave (102) which reacted, presumably through the acyl imine, with enol ethers to form a carbon-carbon bond a to the nitrogen atom (Scheme 9). The regiochemical control in this reaction is illustrated by the exclusive oxidation at the less substituted carbon atom (55JA439). [Pg.374]

Anodic oxidation of Grignard reagents (5) in the presence of styrene (30), butadiene (36) or vinyl ethyl ether (37) was investigated by Schafer and Kuntzel as an interesting (for preparative use) extension of other anodic reactions with olefins. The electrolysis was carried out at constant current density at Pt, Cu or graphite electrodes. It was found that the products obtained depend on the electrode material, as is seen from the data presented in Table 9. [Pg.237]


See other pages where Ethers anodic oxidation is mentioned: [Pg.115]    [Pg.91]    [Pg.133]    [Pg.44]    [Pg.45]    [Pg.324]    [Pg.15]    [Pg.69]    [Pg.71]    [Pg.72]    [Pg.141]    [Pg.63]    [Pg.73]    [Pg.76]    [Pg.82]    [Pg.123]    [Pg.126]    [Pg.85]    [Pg.91]    [Pg.198]    [Pg.203]    [Pg.123]    [Pg.250]    [Pg.57]   
See also in sourсe #XX -- [ Pg.803 ]

See also in sourсe #XX -- [ Pg.803 ]

See also in sourсe #XX -- [ Pg.7 , Pg.803 ]

See also in sourсe #XX -- [ Pg.7 , Pg.803 ]

See also in sourсe #XX -- [ Pg.803 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic oxidation

Anodic oxides

Ethers oxidation

© 2024 chempedia.info