Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ether complexes, osmium

Lactate-Derived Phenyl Ether Complexes of Osmium(II). 122... [Pg.96]

A catalytic enantio- and diastereoselective dihydroxylation procedure without the assistance of a directing functional group (like the allylic alcohol group in the Sharpless epox-idation) has also been developed by K.B. Sharpless (E.N. Jacobsen, 1988 H.-L. Kwong, 1990 B.M. Kim, 1990 H. Waldmann, 1992). It uses osmium tetroxide as a catalytic oxidant (as little as 20 ppm to date) and two readily available cinchona alkaloid diastereomeis, namely the 4-chlorobenzoate esters or bulky aryl ethers of dihydroquinine and dihydroquinidine (cf. p. 290% as stereosteering reagents (structures of the Os complexes see R.M. Pearlstein, 1990). The transformation lacks the high asymmetric inductions of the Sharpless epoxidation, but it is broadly applicable and insensitive to air and water. Further improvements are to be expected. [Pg.129]

The very sensitive ether peroxide test strips (Merckoquant, Art. No. 10011), available from E. Merck, Darmstadt, are used. If the test is still positive at this point, an additional 0.2 ml. of N-methyl morpholine is added. Stirring and heating at 75° are continued for another 5 hours. Remaining peroxide renders the work-up and drying of the product potentially hazardous. N-Methylmorpholine N-oxide (1) and hydrogen peroxide form a strong 1 1 complex. In the reaction with osmium tetroxide, this complex produces conditions similar to those of the Milas reaction,7 and some ketol formation may result. [Pg.46]

To improve the position selectivity in the AD of oligoprenyl compounds bis-cinchona alkaloid ligand 8 was introduced by Corey 15,6]. Its design was based on the [3+2]-cycloaddition model for the AD mechanism, which will be discussed in Section 6E. 1.2. The two 4-heptyl ether substituents of the quinolines are supposed to assist fixation of the substrate in the binding cleft. Additionally, the jV-methylquinuclidinium unit and the linking naphthopyridazine were introduced to rigidify the osmium tetroxide complex of 8 [6],... [Pg.400]

C-M bond addition, for C-C bond formation, 10, 403-491 iridium additions, 10, 456 nickel additions, 10, 463 niobium additions, 10, 427 osmium additions, 10, 445 palladium additions, 10, 468 rhodium additions, 10, 455 ruthenium additions, 10, 444 Sc and Y additions, 10, 405 tantalum additions, 10, 429 titanium additions, 10, 421 vanadium additions, 10, 426 zirconium additions, 10, 424 Carbon-oxygen bond formation via alkyne hydration, 10, 678 for aryl and alkenyl ethers, 10, 650 via cobalt-mediated propargylic etherification, 10, 665 Cu-mediated, with borons, 9, 219 cycloetherification, 10, 673 etherification, 10, 669, 10, 685 via hydro- and alkylative alkoxylation, 10, 683 via inter- andd intramolecular hydroalkoxylation, 10, 672 via metal vinylidenes, 10, 676 via SnI and S Z processes, 10, 684 via transition metal rc-arene complexes, 10, 685 via transition metal-mediated etherification, overview,... [Pg.76]

Protonation of 322 with tetrafluoroboric acid in diethyl ether gives the cyclohexadienyl derivative 325 in 70% yield. Treatment of 325 with lithium aluminum hydride yields the biscyclohexadienyl osmium(II) complex 326. Treatment of 322 with PMe3 at 60°C gives the hydridophenyl osmium-(II) complex 181, rather than the expected arene bistrimethylphosphine osmium(O) compound, via intramolecular C—H bond activation of the benzene ligand (192,193) (Scheme 38). Compound 181 as well as the analogous ruthenium complex (92) have also been obtained directly by cocondensation of osmium or ruthenium atoms with benzene and tri-methylphosphine (62) [Eq. (44)]. [Pg.236]

Several groups have completed computational studies on the relative stabilities of osmium carbyne, carbene, and vinylidene species. DFT calculations on the relative thermodynamic stability of the possible products from the reaction of OsH3Cl(PTr3)2 with a vinyl ether CH2=CH(OR) showed that the carbyne was favored. Ab initio calculations indicate that the vinylidene complex [CpOs(=C=CHR)L]+ is more stable than the acetylide, CpOs(-C=CR)L, or acetylene, [CpOs() -HC=CR)L]+, complexes but it doesn t form from these complexes spontaneously. The unsaturated osmium center in [CpOsL]+ oxidatively adds terminal alkynes to give [CpOsH(-C=CR)L]+. Deprotonation of the metal followed by protonation of the acetylide ligand gives the vinylidene product. [Pg.3370]

Friedel-Crafts reactions. The reaction of osmium-complexed anisoles with electrophiles such as enones is catalyzed by TfOH. Benzylation of arenes by a reductive alkylation with arenecarbaldehyde acetals involves an intramolecular redox process (hydride shift) after protonation of the benzylic ether intermediates. [Pg.398]

The vinyl derivative 4-methyl-4 -vinyl-bpy is valuable for chemical electrode modification because its ruthenium and osmium complexes can be polymerized to generate electroactive films with variable properties.86 This unsymmetric ligand was prepared in 35% overall yield from 4,4 -dimethyl bipyridine by first lithiating one methyl group and quenching the anion with (chloromethyl)methyl ether, then reacting with potassium t-butoxide to effect elimination.87,88... [Pg.15]

The chloride-, bromide-, and thiocyanate complexes of ruthenium(IIl) and osmium(IV) can be extracted from acid solutions by oxygen-containing solvents, also in the presence of TBP or amines [10,12-15]. Osmium has been separated from Ru after conversion into Osle and extraction with TO A [16]. From mixtures of thiocyanate complexes of Ru and Os, only the Os complex can be extracted into diethyl ether containing a small amount of peroxide [14]. Poljmrethane foam has also been used for separating Ru and Os as their thiocyanate complexes [17,18]. [Pg.365]

The thiocyanate complex forms the basis of a less sensitive method for determining osmium [14,100,101]. The molar absorptivity is 1.710 at 620 nm (in diethyl ether). The anionic thiocyanate complex has been extracted with hexamethylphosphoramide in CHCI3 (e = 2.1-10 ) [101],... [Pg.372]

A transformation showing enhancement of the reactivity of phenol through transition metal complexation occurs in the reaction of [Os(NH3)s(fi -phenol]-(OTO2 with maleic anhydride in acetonitrile over 20 hours at ambient temperature followed by recovery of the product, dimethyl (4-hydroxyphenyl)succinate in 85% yield by simple ethereal precipitation and removal of the osmium by refluxing in acidic methanol (ref.39). These last two examples illustrate the versatility of the appropriately modified phenolic structure to function either in a nucleophilic or in an electrophilic manner. [Pg.160]

The synthetic procedure is very critical. In our case, we believe that the imido-lithium compound (Li2NR) is present in the solution of butyl lithium and para-toluidine, in diethyl ether, as reported for the dilithiated a-naphtylamine. This is a noticeable difference in comparison to typical preparations of ruthenium, osmium, and iridium imido complexes, " in which a dichlorometal complex and the monolithium salt (LiNHR) in a molar ratio 1 2, appropriate for a ftA-amido precursor, are used. In these cases a subsequent removal of amine, or a dehydro-halogenation step with LiNHR, is required to afford the products and free amine. Equation (1) summarizes our synthetic procedure ... [Pg.477]


See other pages where Ether complexes, osmium is mentioned: [Pg.270]    [Pg.161]    [Pg.253]    [Pg.258]    [Pg.121]    [Pg.473]    [Pg.258]    [Pg.141]    [Pg.222]    [Pg.247]    [Pg.298]    [Pg.217]    [Pg.313]    [Pg.203]    [Pg.555]    [Pg.3369]    [Pg.6002]    [Pg.881]    [Pg.879]    [Pg.69]    [Pg.1114]    [Pg.19]    [Pg.40]    [Pg.181]    [Pg.11]    [Pg.24]    [Pg.3368]    [Pg.6001]    [Pg.438]    [Pg.555]    [Pg.287]    [Pg.288]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Ether complexes

Osmium complexes

© 2024 chempedia.info