Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethanol cluster systems, hydrogen bond

Microwave spectroscopy is probably the ultimate tool to study small alcohol clusters in vacuum isolation. With the help of isotope substitution and auxiliary quantum chemical calculations, it provides structural insights and quantitative bond parameters for alcohol clusters [117, 143], The methyl rotors that are omnipresent in organic alcohols complicate the analysis, so that not many alcohol clusters have been studied with this technique and its higher-frequency variants. The studied systems include methanol dimer [143], ethanol dimer [91], butan-2-ol dimer [117], and mixed dimers such as propylene oxide with ethanol [144]. The study of alcohol monomers with intramolecular hydrogen-bond-like interactions [102, 110, 129, 145 147] must be mentioned in this context. In a broader sense, this also applies to isolated ra-alkanols, where a weak Cy H O hydrogen bond stabilizes certain conformations [69,102]. Microwave techniques can also be used to unravel the information contained in the IR spectrum of clusters with high sensitivity [148], Furthermore, high-resolution UV spectroscopy can provide accurate structural information in suitable systems [149, 150] and thus complement microwave spectroscopy. [Pg.18]

Once the alcohol or at least the cluster contains a soft ionization or fluorescence chromophore, a wide range of experimental tools opens up. Experimental methods for hydrogen-bonded aromatic clusters have been reviewed before [3, 19, 175]. Fluorescence can sometimes behave erratically with cluster size [176], and short lifetimes may require ultrafast detection techniques [177]. However, the techniques are very powerful and versatile in the study of alcohol clusters. Aromatic homologs of ethanol and propanol have been studied in this way [35, 120, 121, 178, 179]. By comparison to the corresponding nonaromatic systems [69], the O—H - n interaction can be unraveled and contrasted to that of O—H F contacts [30]. Attachment of nonfunctional aromatic molecules to nonaromatic alcohols and their clusters can induce characteristic switches in hydrogen bond topology [180], like aromatic side chains [36]. Nevertheless, it is a powerful tool for the size-selected study of alcohol clusters. [Pg.21]


See other pages where Ethanol cluster systems, hydrogen bond is mentioned: [Pg.5]    [Pg.72]    [Pg.427]    [Pg.37]    [Pg.163]    [Pg.374]   


SEARCH



Bond Systems

Bonded Systems

Bonding system

Cluster systems

Clusters bonding

Clusters hydrogenation

Ethanol clustering

Ethanol hydrogen bonding

Hydrogen bond cluster

Hydrogen bonded clusters

Hydrogen bonding clusters

Hydrogen bonds ethanol systems

Hydrogen cluster

Hydrogen systems

Hydrogenous systems

System ethanol

© 2024 chempedia.info