Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethane polymers

Note Unless the word "monobrominated" had been used in the problem, a whole host of products would have been possible i.e. polybrominated ethanes, polymers, and so on. [Pg.393]

These high energy speeies are extremely reactive, with themselves and with nucleophiles, and can generate runaway exotherms. With water, rapid evolution of carbon dioxide results. Some instances are reported [1]. A compound of this class was resposible for the worst chemical industry accident to date. Di-isocyanates are extensively employed, with polyols, to generate polym-ethane polymers. The polymerisation temperatiu e should be held below 180°C or decomposition may occru which, in the case of foams, may induce later autoignition. [Pg.279]

HEUR polymers (flydrophobe-modified ffthoxylated f// ethane polymers) a class of rheology modifiers consisting of poly(ethylene oxide) fragments connected by isocyanate units. Aqueous solutions of HEUR polymers exhibit increased viscosity at low shear rate. [Pg.64]

For a carbon-carbon bond located along a polymer backbone, the preceding molecular representation must be modified to Fig. 1.8c. The chain segments on either side of the bond of interest are substituents for which the amount of steric hindrance follows a slightly different pattern than for the unsubstituted ethane. Using the same convention for [Pg.58]

Natural gas Hquids represent a significant source of feedstocks for the production of important chemical building blocks that form the basis for many commercial and iadustrial products. Ethyleae (qv) is produced by steam-crackiag the ethane and propane fractions obtained from natural gas, and the butane fraction can be catalyticaHy dehydrogenated to yield 1,3-butadiene, a compound used ia the preparatioa of many polymers (see Butadiene). The / -butane fractioa can also be used as a feedstock ia the manufacture of MTBE. [Pg.174]

About 35% of total U.S. LPG consumption is as chemical feedstock for petrochemicals and polymer iatermediates. The manufacture of polyethylene, polypropylene, and poly(vinyl chloride) requires huge volumes of ethylene (qv) and propylene which, ia the United States, are produced by thermal cracking/dehydrogenation of propane, butane, and ethane (see Olefin polymers Vinyl polymers). [Pg.187]

Both propylene and isobutylene ate comonomers that are incorporated along the chain, resulting in additional short-chain branching. One important factor in controlling polymer crystallinity is the choice of chain-transfer agent. Ethane and methane, for example, are inefficient agents whose presence in the monomer feed stream must be considered in reaction control. [Pg.374]

Reversed-phase hplc has been used to separate PPG into its components using evaporative light scattering and uv detection of their 3,5-dinitroben2oyl derivatives. Acetonitrile—water or methanol—water mixtures effected the separation (175). Polymer glycols in PUR elastomers have been identified (176) by pyrolysis-gc. The pyrolysis was carried out at 600°C and produced a small amount of ethane, CO2, propane, and mostiy propylene, CO, and CH4. The species responsible for a musty odor present in some PUR foam was separated and identified by gc (Supelco SP-2100 capillary column)... [Pg.354]

Prepa.ra.tion, The preparation of amorphous high (99%) 1,2-polybutadiene was first reported iu 1981 (27). The use of a heterocycHc chelating diamine such as dipiperidine ethane iu the polymerization gave an amorphous elastomeric polymer of 99.9% 1,2 units and a glass-transition temperature of +5°C. In a previous description (53,54) of the use of a chelating diamine such as A/A/N(N -tetramethylethylene diamine, an 80% 1,2-polybutadiene with a glass-transition temperature of —30°C was produced. [Pg.532]

Before considering the special case of rotation about bonds in polymers it is useful to consider such rotations in simple molecules. Although reference is often made to the free rotation about a single bond, in fact rotational energies of the order of 2kcal/mole are required to overcome certain energy barriers in such simple hydrocarbons as ethane. During rotation of one part of a molecule about... [Pg.59]

Wojtkonski [185] has also reported on three series of melt spinnable thermotropic aromatic-aliphatic polyimines. The polyimines were prepared by reaction of 1,2-bis(4-formylphenoxy) ethane, terephthalaldehyde, or 4,4 -biphenyldicarboxaldehyde, respectively, with l,n-bis(4-amino-3-methylphenoxy) alkanes where n = 1-10, 12, 14, and 16 in dry DMAC containing 5% dry lithium chloride. The polymers decomposed at 400°C, and as the length of the flexible aliphatic segments increased, melting points decreased. Polymers with an odd... [Pg.47]

The most important olefins used for the production of petrochemicals are ethylene, propylene, the butylenes, and isoprene. These olefins are usually coproduced with ethylene by steam cracking ethane, LPG, liquid petroleum fractions, and residues. Olefins are characterized by their higher reactivities compared to paraffinic hydrocarbons. They can easily react with inexpensive reagents such as water, oxygen, hydrochloric acid, and chlorine to form valuable chemicals. Olefins can even add to themselves to produce important polymers such as polyethylene and polypropylene. Ethylene is the most important olefin for producing petrochemicals, and therefore, many sources have been sought for its production. The following discusses briefly, the properties of these olefmic intermediates. [Pg.32]

The dendritic growth of lithium was suppressed on a lithium electrode surface modified by an ultrathin solid polymer electrolyte prepared from 1,1—difluoro-ethane by plasma polymerization [114]. [Pg.58]

In order to generate the starting material for a polymer that is used in water bottles, hydrogen is removed from the ethane in natural gas to produce ethene in the catalyzed reaction C,H6(g) H,(g) + C,ll4(g). Use the information in Appendix 2A to calculate the equilibrium constant for the reaction at 298 K. (a) If the reaction is begun by adding the catalyst to a flask containing C,H6 at 10.0 bar, what will be the partial pressure of the C,H4 at equilibrium (b) Identify three steps the manufacturer can take to increase the yield of product,... [Pg.513]

The small molecules used as the basic building blocks for these large molecules are known as monomers. For example the commercially important material poly(vinyl chloride) is made from the monomer vinyl chloride. The repeat unit in the polymer usually corresponds to the monomer from which the polymer was made. There are exceptions to this, though. Poly(vinyl alcohol) is formally considered to be made up of vinyl alcohol (CH2CHOH) repeat units but there is, in fact, no such monomer as vinyl alcohol. The appropriate molecular unit exists in the alternative tautomeric form, ethanal CH3CHO. To make this polymer, it is necessary first to prepare poly(vinyl ethanoate) from the monomer vinyl ethanoate, and then to hydrolyse the product to yield the polymeric alcohol. [Pg.1]

An unprecedented stereoselective procedure to obtain enantiomerically pure transition cluster M3Q4 complexes consists of the direct excision of the M3Q7X4 n polymers using chiral diphosphanes, namely (+)-l,2-bis[(2J ,5R)-2,5-(dimethylphospholano)]ethane [(R,R)-Me-BPE] and its respective enantiomer [(S,S)-Me-BPE] to afford the trinuclear complexes (P)-[Mo3S4Cl3(J ,J -Me-BPE)3] and (Af)-[Mo3S4Cl3(S,S-Me-BPE)3] , respectively [30]. The structures of both enantiomers are shown in Fig. 7.3. The symbols (P) and (M) refer to the rotation of the chlorine atoms around the C3 axis, with the capping sulfur pointing towards the viewer. [Pg.111]

Using a polymer electrolyte membrane cell in which flowed through the anode chamber. The major intermediate chlorinated products from tetrachloroethene or tet-rachloromethane were trichloroethene or trichloromethane, and these were finally reduced to a mixture of ethane and ethene, or methane (Liu et al. 2001). [Pg.38]


See other pages where Ethane polymers is mentioned: [Pg.230]    [Pg.302]    [Pg.129]    [Pg.369]    [Pg.369]    [Pg.85]    [Pg.230]    [Pg.302]    [Pg.129]    [Pg.369]    [Pg.369]    [Pg.85]    [Pg.18]    [Pg.168]    [Pg.375]    [Pg.419]    [Pg.420]    [Pg.188]    [Pg.470]    [Pg.150]    [Pg.373]    [Pg.426]    [Pg.181]    [Pg.432]    [Pg.441]    [Pg.507]    [Pg.150]    [Pg.33]    [Pg.111]    [Pg.450]    [Pg.507]    [Pg.90]    [Pg.165]    [Pg.102]    [Pg.195]    [Pg.101]    [Pg.180]    [Pg.921]   


SEARCH



© 2024 chempedia.info