Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters nitrone 1,3-dipolar cycloadditions

Other approaches to (36) make use of (37, R = CH ) and reaction with a tributylstannyl allene (60) or 3-siloxypentadiene (61). A chemicoen2ymatic synthesis for both thienamycia (2) and 1 -methyl analogues starts from the chiral monoester (38), derived by enzymatic hydrolysis of the dimethyl ester, and proceeding by way of the P-lactam (39, R = H or CH ) (62,63). (3)-Methyl-3-hydroxy-2-methylpropanoate [80657-57-4] (40), C H qO, has also been used as starting material for (36) (64), whereas 1,3-dipolar cycloaddition of a chiral nitrone with a crotonate ester affords the oxa2ohdine (41) which again can be converted to a suitable P-lactam precursor (65). [Pg.8]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

Reaction of the nitrone 4-184 with allenic esters 4-185 as described by Ishar and coworkers led to the benzo[b]indolizines 4-186, together with small quantities of 4-187 (<5%) (Scheme 4.40) [63]. The first transformation is a 1,3-dipolar cycloaddition this is followed by four further steps, including a [4+2] cycloaddition of an intermediate 1-aza-l,3-butadiene. [Pg.306]

Alkenylboronic esters undergo regio- and stereoselective 1,3-dipolar cycloadditions with nitrones. These reactions lead to boronic ester-substituted isoxazolidines, which can be converted by oxidation with H202 to the corresponding 4-hydroxy derivatives (Eq. 8.48).69 The high selectivity could be the result of a favorable interaction between the boronic ester and the amino group. [Pg.251]

A study of the regioselectivity of the 1,3-dipolar cycloaddition of aliphatic nitrile oxides with cinnamic acid esters has been published. AMI MO studies on the gas-phase 1,3-dipolar cycloaddition of 1,2,4-triazepine and formonitrile oxide show that the mechanism leading to the most stable adduct is concerted. An ab initio study of the regiochemistry of 1,3-dipolar cycloadditions of diazomethane and formonitrile oxide with ethene, propene, and methyl vinyl ether has been presented. The 1,3-dipolar cycloaddition of mesitonitrile oxide with 4,7-phenanthroline yields both mono-and bis-adducts. Alkynyl(phenyl)iodonium triflates undergo 2 - - 3-cycloaddition with ethyl diazoacetate, Ai-f-butyl-a-phenyl nitrone and f-butyl nitrile oxide to produce substituted pyrroles, dihydroisoxazoles, and isoxazoles respectively." 2/3-Vinyl-franwoctahydro-l,3-benzoxazine (43) undergoes 1,3-dipolar cycloaddition with nitrile oxides with high diastereoselectivity (90% de) (Scheme IS)." " ... [Pg.460]

Aside from the relatively trivial conversions of nitronates to the corresponding oxime and carbonyl compounds (10,11), the chemistry of nitronates remained relatively unexplored for much of the early 1900s. However, in 1964, Tartakovskii et al. (12) demonstrated that alkyl nitronate esters were competent partners in the newly discovered class of dipolar cycloadditions with alkenes (Scheme 2.1). Both cyclic and acyclic nitronates participated, thus providing a new functional group were the nitrogen atom existed at the center of an acetal (13). These compounds were subsequently referred to as nitroso acetals (14) or nitrosals (15). [Pg.85]

Cyclic alkyl nitronates may be used in tandem [4+2]/[3+2] cycloadditions of nitroalkanes, and this reaction has been extensively studied by Denmark et al. (64,333-335). In recent work, they developed the silicon-tethered heterodiene-alkene 219 (Scheme 12.63). Steric hindrance and the fact that both the nitroalkene and the a,p-unsaturated ester in 219 are electron deficient renders the possibility of self-condensation. Instead, 219 reacts with the electron-rich chiral vinyl ether 220 in the presence of the catalyst 224 to form the intermediate chiral nitronate 221. The tandem reaction proceeds from 221 with an intramolecular 1,3-dipolar cycloaddition to form 222 with 93% de. Further synthetic steps led to the formation of ( )-detoxinine 223 (333). A similar type of tandem reaction has also been applied by Chattopadhyaya and co-workers (336), using 2, 3 -dideoxy-3 -nitro-2, 3 -didehydrothymidine as the starting material (336). [Pg.863]

Isoxazolidines result from 1,3-dipolar cycloadditions of nitrone or nitrone esters and alkenes (see Equation (1)) (95PHC179). [Pg.560]

Asymmetric 1,3-dipolar cycloaddition of nitrones to ketene acetals is effectively catalyzed by chiral oxazaborolidines derived from N-tosyl-L-a-amino acids to afford 5,5-dialkoxyisoxa-zolidines with high regio- and stereoselectivity [70] (Eq. 8A.46). Hydrolysis of the N-O bond of the resulting chiral adducts under mild conditions yields the corresponding [1-amino esters quantitatively. [Pg.487]

In a study of vinylcyclopropanes with tetranitromethane (TNM), from 1,1-divinylcyclopropane 156, a specific 1,4-diene, the unexpected product 118, was obtained. The formation of the nitronic ester was accompanied by homo-allylic rearrangement, followed by the intramolecular 1,3-dipolar cycloaddition (Equation 9) <2002DOC9>. [Pg.129]

Kobayashi et al. found that lanthanide triflates were excellent catalysts for activation of C-N double bonds —activation by other Lewis acids required more than stoichiometric amounts of the acids. Examples were aza Diels-Alder reactions, the Man-nich-type reaction of A-(a-aminoalkyl)benzotriazoles with silyl enol ethers, the 1,3-dipolar cycloaddition of nitrones to alkenes, the 1,2-cycloaddition of diazoesters to imines, and the nucleophilic addition reactions to imines [24], These reactions are efficiently catalyzed by Yb(OTf)3. The arylimines reacted with Danishefsky s diene to give the dihydropyridones (Eq. 14) [25,26], The arylimines acted as the azadienes when reacted with cyclopentadiene, vinyl ethers or vinyl thioethers, providing the tet-rahydroquinolines (Eq. 15). Silyl enol ethers derived from esters, ketones, and thio-esters reacted with N-(a-aminoalkyl)benzotriazoles to give the /5-amino carbonyl compounds (Eq. 16) [27]. The diastereoselectivity was independent of the geometry of the silyl enol ethers, and favored the anti products. Nitrones, prepared in situ from aldehydes and N-substituted hydroxylamines, added to alkenes to afford isoxazoli-dines (Eq. 17) [28]. Addition of diazoesters to imines afforded CK-aziridines as the major products (Eq. 18) [29]. In all the reactions the imines could be generated in situ and the three-component coupling reactions proceeded smoothly in one pot. [Pg.921]

Isoxazolidin-5-ones 549 can be prepared by 1,3-dipolar cycloaddition of nitrones and ketenes or ynolates or, alternatively, by cyclization of 3-(hydroxyamino)propanoates 550 in turn obtained by addition of ketene acetals to nitrones or by Michael addition of hydroxylamine derivatives to a,/3-unsaturated esters (Scheme 132). [Pg.457]

New asymmetric reactions utilizing tartaric acid esters as chiral auxiliaries (formation of N- and A,0-heteroeyeles by nucleophilic addition of iminoderivatives or 1,3-dipolar cycloaddition of nitrile oxides and nitrones) 03SL1075. [Pg.158]

Dipolar cycloadditions of pyrroHne N-oxides, which could be regarded as cycHc nitrones , on electron-poor aUcenes, represent a viable method to obtain highly substituted pyrrolizidines. Enantiopure (S)-3-alkoxypyrroline N-oxide (170), on the other hand, has been exploited in stereoselective cycloaddition reactions with solid-supported unsaturated esters (169) [266]. A both regio- and stereoselective cycloaddition took place in this case, affording the desired compound (171) as a single isomer (Scheme 36). [Pg.212]

IsoxazoUne iV-oxides reflect in their characteristics both as a heterocyclic isoxazoline ring as well as cyclic nitronic ester. As a nitronic ester they can undergo 1,3-dipolar cycloaddition with even... [Pg.247]


See other pages where Esters nitrone 1,3-dipolar cycloadditions is mentioned: [Pg.24]    [Pg.216]    [Pg.115]    [Pg.250]    [Pg.68]    [Pg.171]    [Pg.463]    [Pg.20]    [Pg.39]    [Pg.889]    [Pg.109]    [Pg.98]    [Pg.30]    [Pg.49]    [Pg.735]    [Pg.1124]    [Pg.439]    [Pg.439]    [Pg.266]    [Pg.415]    [Pg.30]    [Pg.439]    [Pg.454]    [Pg.256]   


SEARCH



1.3- Dipolar cycloaddition nitronates

Cycloaddition ester

Esters cycloadditions

Nitronates cycloadditions

Nitrone 1,3-dipolar cycloaddition

Nitrone esters

Nitrones 1,3-dipolar cycloadditions

Nitrones cycloaddition

Nitrones, cycloadditions

Nitrones, dipolar cycloaddition

Nitronic esters

© 2024 chempedia.info