Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters asymmetric epoxidation

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

The asymmetric epoxidation of electron-poor cinnamate ester derivatives was highlighted by Jacobsen in the synthesis of the Taxol side-chain. Asymmetric epoxidation of ethyl cinnamate provided the desired epoxide in 96% ee and in 56% yield. Epoxide ring opening with ammonia followed by saponification and protection provided the Taxol side-chain 46 (Scheme 1.4.12). [Pg.40]

There have been two general approaches to the direct asymmetric epoxidation of carbonyl-containing compounds (Scheme 1.2) ylide-mediated epoxidation for the construction of aryl and vinyl epoxides, and a-halo enolate epoxidation (Darzens reaction) for the construction of epoxy esters, acids, amides, and sulfones. [Pg.3]

The epoxidation of allylic alcohols can also be effected by /-butyl hydroperoxide and titanium tetraisopropoxide. When enantiomerically pure tartrate ligands are included, the reaction is highly enantioselective. This reaction is called the Sharpless asymmetric epoxidation.55 Either the (+) or (—) tartrate ester can be used, so either enantiomer of the desired product can be obtained. [Pg.1082]

In contrast to the epoxidation of a,/3-unsaturated ketones, the metal-catalyzed asymmetric epoxidations of o,/3-unsaturated esters are much more limited in number. Epoxidation of ethyl m-cinnamatc with Mn(salen) (26) has been reported to give a mixture of the corresponding cis-(93% ee) and trans-epoxides in a ratio of 4 1.133... [Pg.225]

The oxidation of enol ethers and their derivatives is a useful method for the synthesis of a-hydroxy-ketones or their derivatives, which are versatile building blocks for organic synthesis. Since enol ethers and esters are types of olefin, some asymmetric epoxidation and dihydroxylation reactions have been applied to their oxidation. [Pg.225]

Following their success with chiral ketone-mediated asymmetric epoxidation of unfunctionalized olefins, Zhu et al.113 further extended this chemistry to prochiral enol silyl ethers or prochiral enol esters. As the resultant compounds can easily be converted to the corresponding a-hydroxyl ketones, this method may also be regarded as a kind of a-hydroxylation method for carbonyl substrates. Thus, as shown in Scheme 4-58, the asymmetric epoxidation of enol silyl... [Pg.254]

Related catalytic enantioselective processes It is worthy of note that the powerful Ti-catalyzed asymmetric epoxidation procedure of Sharpless [27] is often used in the preparation of optically pure acyclic allylic alcohols through the catalytic kinetic resolution of easily accessible racemic mixtures [28]. When the catalytic epoxidation is applied to cyclic allylic substrates, reaction rates are retarded and lower levels of enantioselectivity are observed. Ru-catalyzed asymmetric hydrogenation has been employed by Noyori to effect the resolution of five- and six-membered allylic carbinols [29] in this instance, as with the Ti-catalyzed procedure, the presence of an unprotected hydroxyl function is required. Perhaps the most efficient general procedure for the enantioselective synthesis of this class of cyclic allylic ethers is that recently developed by Trost and co-workers, involving Pd-catalyzed asymmetric additions of alkoxides to allylic esters [30]. [Pg.194]

A typical manganese-salen complex (27)[89] is capable of catalysing the asymmetric epoxidation of (Z)-alkenes (Scheme 18) using sodium hypochlorite (NaOCl) as the principle oxidant. Cyclic alkenes and a, (3-unsaturated esters are also excellent starting materials for example indene may be transformed into the corresponding epoxide (28) with good enantiomeric excess1901. The epoxidation of such alkenes can be improved by the addition of ammonium acetate to the catalyst system 911. [Pg.23]

Table 5.1 Catalytic asymmetric epoxidation of allylic alcohols using a combination of titanium wopropoxide. enantiomerically pure tartrate ester ((+)-DET or (+)-DIPT) and rerr-butyl hydroperoxide (yield and enantiomeric excess, according to the relevant publication). ... Table 5.1 Catalytic asymmetric epoxidation of allylic alcohols using a combination of titanium wopropoxide. enantiomerically pure tartrate ester ((+)-DET or (+)-DIPT) and rerr-butyl hydroperoxide (yield and enantiomeric excess, according to the relevant publication). ...
Although it was also Henbest who reported as early as 1965 the first asymmetric epoxidation by using a chiral peracid, without doubt, one of the methods of enantioselective synthesis most frequently used in the past few years has been the "asymmetric epoxidation" reported in 1980 by K.B. Sharpless [3] which meets almost all the requirements for being an "ideal" reaction. That is to say, complete stereofacial selectivities are achieved under catalytic conditions and working at the multigram scale. The method, which is summarised in Fig. 10.1, involves the titanium (IV)-catalysed epoxidation of allylic alcohols in the presence of tartaric esters as chiral ligands. The reagents for this asyimnetric epoxidation of primary allylic alcohols are L-(+)- or D-(-)-diethyl (DET) or diisopropyl (DIPT) tartrate,27 titanium tetraisopropoxide and water free solutions of fert-butyl hydroperoxide. The natural and unnatural diethyl tartrates, as well as titanium tetraisopropoxide are commercially available, and the required water-free solution of tert-bnty hydroperoxide is easily prepared from the commercially available isooctane solutions. [Pg.278]

If optimal conditions are desired for a specific asymmetric epoxidation.variation of the tartrate ester is likely to be a useful exercise. [Pg.278]

The range of the asymmetric epoxidation reaction may be extended still further to include dienes (Entries 7,12,17) and even tetraenes (Entry 26). It is of interest to note that only double bonds adjacent to the carbonyl function are epoxidised and any remaining double bonds are left untouched (Entry 26). This selective reactivity allows for further elaboration of unreacted alkene units at a later stage, (see Sect. 5). Enediones (Entries 21-23) and unsatuxated keto esters (Entries 24 and 25) can also be oxidised in good yields and good to excellent stereoselectivity using polyamino acids. [Pg.132]

One of the first attempts to extend polymer-assisted epoxidations to asymmetric variants were disclosed by Sherrington et al. The group employed chiral poly(tartrate ester) hgands in Sharpless epoxidations utilizing Ti(OiPr)4 and tBuOOH. However, yields and degree of stereoselection were only moderate [76]. In contrast to most concepts, Pu and coworkers applied chiral polymers, namely polymeric binaphthyl zinc to effect the asymmetric epoxidation of a,/9-unsaturated ketones in the presence of terPbutyl hydroperoxide (Scheme 4.11). [Pg.214]

The use of tartrate esters was an obvious place to start, especially since both enantiomers are readily available commercially and had already found widespread application in asymmetric synthesis (Figure 11) (e.g.. Sharpless asymmetric epoxidation).23.24 Reagents 36-38 are easily prepared and are reasonably enantioselective in reactions with achiral, unhindered aliphatic aldehydes (82-86% ee) typical results are given in Figure 12.3c,h Aromatic and a,p-unsaturated aldehydes, unfortunately, give lower levels of enantioselection (55-70% e.e.). It is also interesting to note that all other C2 symmetric diols that we have examined (2,3-butanediol, 2,4-pentanediol, 1,2-diisopropylethanediol, hydrobenzoin, and mannitol diacetonide, among others) are relatively ineffective in comparison to the tartrate esters (see Table ll).25... [Pg.250]

We began these studies with the intention of applying this tandem asymmetric epoxidation/asymmetric allylboration sequence towards the synthesis of D-olivose derivative 63 (refer to Figure 18). As the foregoing discussion indicates, our research has moved somewhat away from this goal and we have not yet had the opportunity to undertake this synthesis. This, as well as the synthesis of the olivomycin CDE trisaccharide, remain as problems for future exploration. Because it is the enantioselectivity of the tartrate ester allylboronates that has limited the success of the mismatched double asymmetric reactions discussed here, as well as in several other cases published from our laboratorythe focus of our work on chiral allyiboronate chemistry has shifted away from synthetic applications and towards the development of a more highly enantioselective chiral auxiliary. One such auxiliary has been developed, as described below. [Pg.266]

Recently, Shi and coworkers reported high enantioselective asymmetric epoxidation of a,/ -unsaturated esters by using the chiral ketone 35 as a catalyst and Oxone as an oxidant (equation 47) . ... [Pg.1022]

Energy transfer quantum yields, chemiluminescence, 1223 Enhanced chemiluminescence, 1219-20, 1221 Enol esters, dioxirane asymmetric epoxidation, 1150... [Pg.1459]

Sharpless Asymmetric Epoxidation This is a method of converting allylic alcohols to chiral epoxy alcohols with very high enantioselectivity (i.e., with preference for one enantiomer rather than formation of racemic mixture). It involves treating the allylic alcohol with tert-butyl hydroperoxide, titanium(IV) tetra isopropoxide [Ti(0—/Pr)4] and a specific stereoisomer of tartaric ester. For example,... [Pg.229]

During the past year, chloroperoxidase (CPO) was found to catalyze the smooth asymmetric epoxidation of functionalized cii-alkenes, such as the unsaturated ester 32. The reaction appears to be limited to 2-alkenes (i.e., methyl group on one side of the alkene), although some branching on the longer alkyl chain is tolerated. Allylic alcohols are oxidized to the corresponding unsaturated aldehydes but without epoxide formation <99TL1641>. [Pg.61]

CATALYTIC ASYMMETRIC EPOXIDATION OF ix,P-UNSATURATED ESTERS PROMOTED BY A YTTRIUM-BIPHENYLDIOL COMPLEX... [Pg.239]

CATALYTIC ASYMMETRIC EPOXIDATION OF a, S-UNSATURATED ESTERS (TABLE 6.11)... [Pg.246]

Table 6.11 Catal3Tic asymmetric epoxidation of ot, -unsaturated esters using yttrium-... Table 6.11 Catal3Tic asymmetric epoxidation of ot, -unsaturated esters using yttrium-...

See other pages where Esters asymmetric epoxidation is mentioned: [Pg.320]    [Pg.436]    [Pg.437]    [Pg.769]    [Pg.778]    [Pg.316]    [Pg.67]    [Pg.491]    [Pg.44]    [Pg.204]    [Pg.248]    [Pg.249]    [Pg.387]    [Pg.127]    [Pg.146]    [Pg.763]    [Pg.60]    [Pg.1150]    [Pg.798]    [Pg.194]    [Pg.194]    [Pg.240]   


SEARCH



Asymmetric epoxidation

Epoxidations, asymmetric

Epoxides asymmetric epoxidation

Esters epoxidation

© 2024 chempedia.info