Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esterification reaction conditions

Hydrolysis in neutral aqueous solutions proceeds slowly at room temperature and more rapidly at acidic conditions and elevated temperatures. The hydrolysis—esterification reaction is reversible. Under alkaline conditions hydrolysis is rapid and irreversible. Heating the alkaline hydrolysis product at 200—250°C gives 4,4 -oxydibutyric acid [7423-25-8] after acidification (148). [Pg.110]

DiisononylPhthalate andDiisodeeylPhthalate. These primary plasticizers are produced by esterification of 0x0 alcohols of carbon chain length nine and ten. The 0x0 alcohols are produced through the carbonylation of alkenes (olefins). The carbonylation process (eq. 3) adds a carbon unit to an alkene chain by reaction with carbon monoxide and hydrogen with heat, pressure, and catalyst. In this way a Cg alkene is carbonylated to yield a alcohol a alkene is carbonylated to produce a C q alcohol. Due to the distribution of the C=C double bond ia the alkene and the varyiag effectiveness of certain catalysts, the position of the added carbon atom can vary and an isomer distribution is generally created ia such a reaction the nature of this distribution depends on the reaction conditions. Consequendy these alcohols are termed iso-alcohols and the subsequent phthalates iso-phthalates, an unfortunate designation ia view of possible confusion with esters of isophthaUc acid. [Pg.122]

KTB and KTA are superior to alkaU metal hydrides for deprotonation reactions because of the good solubiUties, and because no hydrogen is produced or oil residue left upon reaction. Furthermore, reactions of KTA and KTB can be performed in hydrocarbon solvents as sometimes requited for mild and nonpolar reaction conditions. Potassium alkoxides are used in large quantities for addition, esterification, transesterification, isomerization, and alkoxylation reactions. [Pg.519]

The reaction conditions can be selected so as to be able to separate substances with the same or similar chromatographic properties (critical substance pairs) by exploiting their differing chemical behavior, thus, making it easier to identify them. Specific chemical derivatization allows, for example, the esterification of... [Pg.56]

Another approach is to use an easily oxidized substance such as acetaldehyde or methylethyl ketone, which, under the reaction conditions, forms a hydroperoxide. These will accelerate the oxidation of the second methyl group. The DMT process encompasses four major processing steps oxidation, esterification, distillation, and crystallization. Figure 10-16 shows a typical p-xylene oxidation process to produce terephthalic acid or dimethyl terephthalate. The main use of TPA and DMT is to produce polyesters for synthetic fiber and film. [Pg.296]

The net effect of Fischer esterification is substitution of an -OH group by —OR. Aii steps are reversible, and the reaction can be driven in either direction by choice of reaction conditions. Ester formation is favored when a large excess of alcohol is used as solvent, but carboxylic acid formation is favored when a large excess of water is present. [Pg.796]

The main focus of this account is to review some aspects of the chemistry of cellulose esters. Emphasis is placed on the esterification reaction, carried out under the homogenous reaction conditions (HRC) scheme. Unconventional methods for the synthesis of cellulose derivatives, e.g., esters and ethers... [Pg.106]

Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ... Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ...
Reports have shown solid catalysts for esterification of FFA have one or more problems such as high cost, severe reaction conditions, slow kinetics, low or incomplete conversions, and limited lifetime. We will present research describing our newly developed polymeric catalyst technology which enables the production of biodiesel from feedstock containing high levels (> 1 wt %) of FFAs. The novel catalyst, named AmberlysH BD20, overcomes the traditional drawbacks such as limited catalyst life time, slow reaction rates, and low conversions. [Pg.281]

The following experimental results are presented on the use of solid acid catalysts in esterification of dodecanoic acid with 2-ethylhexanol and methanol. In the next figures, conversion is defined as X [%] = 100-(1 - [Acid]fi ai / [Acid]Muai), and the amount of catalyst used is normahzed cat [%] - 100-A/cat / (A/acid + Milcohol)-Several alcohols were used to show the range of apphcability. The selectivity was assessed by testing the formation of side products in a suspension of catalyst in alcohol. Under the reaction conditions, no products were detected by GC analysis. [Pg.293]

PECH was modified under similar reaction conditions, except that dimethylformamide (DMF) was used as the reaction solvent. In addition, the phase-transfer-catalyzed etherification of the chloromethyl groups of PECH with sodium 4-methoxy -4 -biphenoxide was used to synthesize PECH with direct attachment of the mesogen to the polymer backbone. Similar notations to those used to describe the functionalized PPO are used for functionalized PECH. In this last case, PPO was replaced with PECH. Esterification routes of both PPO and PECH are presented in Scheme I. [Pg.99]

The reaction of a carboxylic acid with N,Af -carbonyldiimidazolellH33 (abbreviated as CDI), forming an imidazolide as the first step followed by alcoholysis or phenolysis of the imidazolide (second step), constitutes a synthesis of esters that differs from most other methods by virtue of its particularly mild reaction conditions.t41,[5] It may be conducted in two separate steps with isolation of the carboxylic acid imidazolide, but more frequently the synthesis is carried out as a one-pot reaction without isolation of the intermediate. Equimolar amounts of carboxylic acid, alcohol, and CDI are allowed to react in anhydrous tetrahydrofuran, benzene, trichloromethane, dichloromethane, dimethylformamide, or nitromethane to give the ester in high yield. The solvents should be anhydrous because of the moisture sensitivity of CDI (see Chapter 2). Even such unusual solvent as supercritical carbon dioxide at a pressure of 3000 psi and a temperature of 36-68 °C has been used for esterification with azolides.[6]... [Pg.39]

Due to excellent yields, mild reaction conditions, and a fast reaction rate, the azolide method is well suited to the synthesis of isotopically labeled esters, even ones with very short half-lives, just as it is always useful for the esterification of sensitive carboxylic acids, alcohols, and phenols under mild conditions. An example is provided by the synthesis of [nC]-quinuclidinyl benzilate prepared from benzilic acid, CDI, and nC-labeled quinuclidinol.[147]... [Pg.68]

The ratio of the a- to the j -anomeric D-glucosyl ester can be influenced by changing the reaction conditions. In DMF the a-anomer of the crocetin bis(D-glucosyl ester) was formed in about 70% yield.[196] Esterification of D-glucose with the imidazolides of benzoic acid or stearic acid in pyridine furnished a mixture of the a- and j -anomers of the C(l) glucosyl ester.[196]... [Pg.80]

Tanaka and Kakiuchi (6) proposed catalyst activation via a hydrogen donor such as an alcohol as a refinement to the mechanism discussed by Fischer (7) for anhydride cured epoxies in the presence of a tertiary amine. The basic catalyst eliminates esterification reactions (8). Shechter and Wynstra ( ) further observed that at reaction conditions BDMA does not produce a homopolymerization of oxiranes. [Pg.276]

Syntheses of aliphatic polyesters by fermentation and chemical processes have been extensively studied from the viewpoint of biodegradable materials science. Recently, another approach to their production has been made by using an isolated lipase or esterase as catalyst via non-biosynthetic pathways under mild reaction conditions. Lipase and esterase are enzymes which catalyze hydrolysis of esters in an aqueous environment in living systems. Some of them can act as catalyst for the reverse reactions, esterifications and transesterifications, in organic media [1-5]. These catalytic actions have been expanded to... [Pg.240]

Using this information, it was possible to optimize the reaction conditions to achieve a particularly high rate enhancement. The rate enhancement of the esterification of benzoic acid with 1-propanol (Scheme 4.1) was increased from 18 to 60 times when the volume was increased from 10 mL to 20 mL at 560 W and increased further to 180 times by increasing the power level to 630 W. [Pg.118]

Esterification of stearic acid and acetic acid with propanol and butanol in the presence of Fe2(S04)3/KSF montmorillonite [37]. The rate enhancement observed (1.5-2.5 times) was ascribed to the higher temperature of the catalyst bed (calculated to be 9-18 K above the bulk temperature). Reaction conditions batch (no stirring) and a stirred single-mode tank reactor, catalyst particle size 5 mm, 10-fold excess of alcohol. [Pg.363]

Esterification of acetic acid by isopentanol in the presence of Amberlyst-15 [38], Reaction conditions hexane solvent, continuous-flow reactor. [Pg.363]

Esterification of acetic acid with 1-propanol in the presence of Si02 [39]. Reaction conditions reflux, tenfold molar excess of 1-propanol, batch reactor. [Pg.363]

Monoglyceride (MG) is one of the most important emulsifiers in food and pharmaceutical industries [280], MG is industrially produced by trans-esterification of fats and oils at high temperature with alkaline catalyst. The synthesis of MG by hydrolysis or glycerolysis of triglyceride (TG) with immobilized lipase attracted attention recently, because it has mild reaction conditions and avoids formation of side products. Silica and celite are often used as immobilization carriers [281], But the immobilized lipase particles are difficult to reuse due to adsorption of glycerol on this carriers [282], PVA/chitosan composite membrane reactor can be used for enzymatic processing of fats and oils. The immobilized activity of lipase was 2.64 IU/cm2 with a recovery of 24%. The membrane reactor was used in a two-phase system reaction to synthesize monoglyceride (MG) by hydrolysis of palm oil, which was reused for at least nine batches with yield of 32-50%. [Pg.168]

Pentaerythritol Ester As with glycerol esters, the esters are produced by esterification of pentaerythritol with the desired fatty acids. For example, under defined reaction conditions and use of stearic acid in defined concentration, pentaerythritol distearate has been recently developed as an off-white wax with very weak odor (Cutina PES). This type of product is offered as co-emulsifier and consistency factor for cosmetic products with high sensorial elegance and can be applied in various formulations (Fig. 4.17). [Pg.93]


See other pages where Esterification reaction conditions is mentioned: [Pg.67]    [Pg.67]    [Pg.230]    [Pg.67]    [Pg.67]    [Pg.67]    [Pg.230]    [Pg.67]    [Pg.302]    [Pg.496]    [Pg.375]    [Pg.946]    [Pg.320]    [Pg.86]    [Pg.505]    [Pg.15]    [Pg.51]    [Pg.135]    [Pg.114]    [Pg.170]    [Pg.88]    [Pg.272]    [Pg.91]    [Pg.85]    [Pg.247]    [Pg.141]    [Pg.352]    [Pg.63]    [Pg.365]    [Pg.299]    [Pg.206]    [Pg.238]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Esterification reaction

Reaction condition

© 2024 chempedia.info