Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esterification asymmetrical

The variety of enzyme-catalyzed kinetic resolutions of enantiomers reported ia recent years is enormous. Similar to asymmetric synthesis, enantioselective resolutions are carried out ia either hydrolytic or esterification—transesterification modes. Both modes have advantages and disadvantages. Hydrolytic resolutions that are carried out ia a predominantiy aqueous medium are usually faster and, as a consequence, require smaller quantities of enzymes. On the other hand, esterifications ia organic solvents are experimentally simpler procedures, aHowiag easy product isolation and reuse of the enzyme without immobilization. [Pg.337]

In the esterification of organic acids with alcohols, it has been shown that in most cases under acid catalysis, the union is between acyl and alkoxy groups. Acid hydrolysis of acetoxysuccinic acid gives malic acid with retention of configuration at the asymmetric carbon atom (11) ... [Pg.374]

Further work by the Ye group has shown that NHCs derived from pre-catalyst 215 can also promote the asymmetric dimerisation of alkylarylketenes 193 to generate alkylidene P-lactones 216 in good diastereo- and enantio-selectivity [83], The asymmetric [4+2] addition of enones and alkylarylketenes to generate 8-lactones 218 in high ee has also been accomplished [84], as has the asymmetric esterification of alkylarylketenes to give esters 217 using benzhydrol, which is assumed to proceed via a Lewis-base mediated mechanism (Scheme 12.46) [85]. [Pg.287]

Within the latter area, Smith and co-workers have shown that asymmetric NHC promoted esterifications of arylalkylketenes 193 can also be achieved with... [Pg.287]

Scheme 12.47 Asymmetric esterification of ketenes with 2-phenylphenol... Scheme 12.47 Asymmetric esterification of ketenes with 2-phenylphenol...
Whilst the addition of a chiral NHC to a ketene generates a chiral azolium enolate directly, a number of alternative strategies have been developed that allow asymmetric reactions to proceed via an enol or enolate intermediate. For example, Rovis and co-workers have shown that chiral azolium enolate species 225 can be generated from a,a-dihaloaldehydes 222, with enantioselective protonation and subsequent esterification generating a-chloroesters 224 in excellent ee (84-93% ee). Notably, in this process a bulky acidic phenol 223 is used as a buffer alongside an excess of an altemativephenoliccomponentto minimise productepimerisation (Scheme 12.48). An extension of this approach allows the synthesis of enantiomericaUy emiched a-chloro-amides (80% ee) [87]. [Pg.288]

Mikolajczyk and coworkers have summarized other methods which lead to the desired sulfmate esters These are asymmetric oxidation of sulfenamides, kinetic resolution of racemic sulfmates in transesterification with chiral alcohols, kinetic resolution of racemic sulfinates upon treatment with chiral Grignard reagents, optical resolution via cyclodextrin complexes, and esterification of sulfinyl chlorides with chiral alcohols in the presence of optically active amines. None of these methods is very satisfactory since the esters produced are of low enantiomeric purity. However, the reaction of dialkyl sulfites (33) with t-butylmagnesium chloride in the presence of quinine gave the corresponding methyl, ethyl, n-propyl, isopropyl and n-butyl 2,2-dimethylpropane-l-yl sulfinates (34) of 43 to 73% enantiomeric purity in 50 to 84% yield. This made available sulfinate esters for the synthesis of t-butyl sulfoxides (35). [Pg.63]

Preparative-scale fermentation of papaveraldine, the known benzyliso-quinoline alkaloid, with Mucor ramannianus 1839 (sih) has resulted in a stereoselective reduction of the ketone group and the isolation of S-papaverinol and S-papaverinol M-oxide [56]. The structure elucidations of both metabolites were reported to be based primarily on ID and 2D NMR analyses and chemical transformations [56]. The absolute configuration of S-papaverinol has been determined using Horeau s method of asymmetric esterification [56]. The structures of the compounds are shown in Fig. 7. [Pg.116]

Asymmetric esterification. me.vo-Cyclohexanedicarboxylic anhydride (1) undergoes a highly stereoselective esterification with the diphenylboric ester (2) of (R)-2-methoxy-l-phenylethanol in the presence of diphenylboryl triflate to provide,... [Pg.154]

H. Hemmerle, H. J. Gais, Asymmetric Hydrolysis and Esterification Catalyzed by Esterases from Porcine Pancreas in the Synthesis of Both Enantiomers of Cyclopentanoid Building Blocks , Tetrahedron Lett. 1987, 28, 3471-3474. [Pg.429]

Biocatalysis is still an emerging field hence, some transformations are more established than others.Panke et alP have performed a survey of patent applications in the area of biocatalysis granted between the years 2000 and 2004. They found that although hydrolases, which perform hydrolyses and esterifications, still command widespread attention and remain the most utilized class of enzyme (Figure 1.5), significant focus has turned towards the use of biocatalysts with different activities and in particular alcohol dehydrogenases (ADHs) - also known as ketoreductases (KREDs) - used for asymmetric ketone reduction. [Pg.4]

Last year, a short enantioselective total synthesis of herbarumin III (42) in 11% overall yield was published the approach applied uses Keck s asymmetric allylation and Sharpless epoxidation to build the key fragment. Esterification with 5-hexenoic acid and a RCM was used to yield 42. Finally, another asymmetric synthesis of herbarumin III (42) was carried out using (R)-cyclohexylidene glyceraldehyde as the chiral template. The key steps of the synthesis were the enantioselective preparation of the... [Pg.450]

Kollner et al. (29) prepared a Josiphos derivative containing an amine functionality that was reacted with benzene-1,3,5-tricarboxylic acid trichloride (11) and adamantane-l,3,5,7-tetracarboxylic acid tetrachloride (12). The second generation of these two types of dendrimers (13 and 14) were synthesized convergently through esterification of benzene-1,3,5-tricarboxylic acid trichloride and adamantane-1,3,5,7-tetracarboxylic acid with a phenol bearing the Josiphos derivative in the 1,3 positions. The rhodium complexes of the dendrimers were used as chiral dendritic catalysts in the asymmetric hydrogenation of dimethyl itaconate in methanol (1 mol% catalyst, 1 bar H2 partial pressure). The enantioselectivities were only... [Pg.91]

Lipases exhibit high catalytic activity in water, an even higher activity in a two-phase system, such as water/water-immiscible organic solvent, and in water-immiscible organic solvents of low water content86-88,90. This allows for the attainment of favorable equilibria in asymmetric hydrolysis and esterification reactions catalyzed by lipases. They are used to their greatest... [Pg.634]

Examples of nonasymmetric organocatalysts that were introduced in the 1950s include analogs of thiamine reported by Breslow in 1957 as an alternative to cyanide as a catalyst for the benzoin condensation [8]. Asymmetric versions of these thiazolium catalysts were used in organocatalytic benzoin condensations by Sheehan and Hunneman in 1966 [9]. In another important development, in 1969 the nucleophilic catalyst 4-(dimethylamino)pyridine (DMAP), which is now widely used for difficult esterifications, was reported by Steglich [10]. [Pg.160]

If we convert (+)-lactic acid into its methyl ester, we can be reasonably certain that the ester will be related in configuration to the acid, because esterification should not affect the configuration about the chiral carbon atom. It happens that the methyl ester so obtained is levorotatory, so we know that (+)-lactic acid and (—)-methyl lactate have the same relative configuration at the asymmetric carbon, even if they possess opposite signs of optical rotation. However, we still do not know the absolute configuration that is, we are unable to tell which of the two possible configurations of lactic acid, 2a or 2b,... [Pg.874]

Esters 16b,c are used in reactions catalyzed by cinchona alkaloid-based phase-transfer catalysts, since the size of the ester is important for efficient asymmetric induction in these reactions [35], However, the syntheses of esters 16b,c adds considerable cost to any attempt to exploit this chemistry on a commercial basis. Fortunately, it was possible to develop reaction conditions which allowed the readily available and inexpensive substrate 16a to be alkylated with high enantios-electivity using catalyst 33 and sodium hydroxide, as shown in Scheme 8.18 [36]. The key feature of this modified process is the introduction of a re-esterification step following alkylation of the enolate of compound 16a. It appears that under... [Pg.175]

The synthesis of the methyl ester of (R)-4-fluoro-3-nitro-phenylalaninc, (R)-38, a key building block in the preparation of the 16-membered cyclic tripeptide ring system of teicoplanin, was reported by Rao and co-workers [47]. This target molecule 38 was synthesized by means of an asymmetric alkylation reaction in the presence of N-benzylcinchoninium bromide (80% yield), followed by hydrolysis and esterification (85% ee Scheme 3.15 Eq. 1). [Pg.26]

A similar catalytic procedure for enantioselective formation of C-Br and C-Cl bonds has been reported recently by the Lectka group [83]. The concept of this a-halogenation of carbonyl compounds is tandem asymmetric halogenation and esterification (Scheme 3.28). Inexpensive acyl halides, 74, are used as starting... [Pg.38]


See other pages where Esterification asymmetrical is mentioned: [Pg.514]    [Pg.514]    [Pg.512]    [Pg.315]    [Pg.388]    [Pg.307]    [Pg.437]    [Pg.506]    [Pg.63]    [Pg.94]    [Pg.479]    [Pg.343]    [Pg.754]    [Pg.37]    [Pg.74]    [Pg.155]    [Pg.140]    [Pg.635]    [Pg.99]    [Pg.49]    [Pg.324]    [Pg.315]    [Pg.61]    [Pg.388]    [Pg.358]    [Pg.148]    [Pg.73]   
See also in sourсe #XX -- [ Pg.71 , Pg.72 , Pg.73 , Pg.74 ]




SEARCH



Asymmetric esterification

© 2024 chempedia.info