Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium potential, reaction rates

Despite its low equilibrium potential, the rate of the carbon oxidation reaction (COR) (reaction 17) is negligible at potentials less than 1.8 V because of its very small exchange current density (j = 6x 10 A/cm ). ... [Pg.268]

At the equilibrium potential, the rates of reactions (116) and (117) are equal to 0, which implies an additional condition ... [Pg.189]

The electrochemical properties of carotenoids has been reviewed [102,103]. Electrochemical data for several naturally occurring carotenoids including oxidation potentials, reaction rate constants and kinetic equilibrium constants were discussed. Conventional electrochemical techniques such as cyclic voltammetry (CV) were treated. The oxidation potential of neutral carotenoids, corresponding to the formation of cation radicals were 0.50 - 0.72 V versus SCE, and that of carotenoid cation radicals, corresponding to the formation of dications were 0.52 - 0.95 V versus SCE. Further details are available [104,105],... [Pg.537]

At equilibrium, the rates of the anodic and cathodic partial reactions are equal, i.e., there is no net change of the inventory of Red and Ox. When the system is perturbed such that the electrode potential is positive with respect to the equilibrium potential, the rate of the anodic partial reaction is greater than that of the cathodic partial reaction. The electrode reaction exhibits a net anodic (oxidation) current. Likewise, for perturbations negative to the equilibrium potential, the electrode reaction exhibits... [Pg.50]

Next, the equilibrium potential and the overpotential will be introduced. At the equilibrium potential the rates of both reactions are zero, from which the following... [Pg.132]

Exchange current density It is the rate of exchange of electrons (expressed as electrical current) when an electrode reaches equilibrium at the equilibrium potential. At the equilibrium potential, the rate of forward reaction (anodic) balances the rate of reverse reaction <—. [Pg.118]

Progress in the theoretical description of reaction rates in solution of course correlates strongly with that in other theoretical disciplines, in particular those which have profited most from the enonnous advances in computing power such as quantum chemistry and equilibrium as well as non-equilibrium statistical mechanics of liquid solutions where Monte Carlo and molecular dynamics simulations in many cases have taken on the traditional role of experunents, as they allow the detailed investigation of the influence of intra- and intemiolecular potential parameters on the microscopic dynamics not accessible to measurements in the laboratory. No attempt, however, will be made here to address these areas in more than a cursory way, and the interested reader is referred to the corresponding chapters of the encyclopedia. [Pg.832]

Equation (2-38) is valid for every region of the surface. In this case only weight loss corrosion is possible and not localized corrosion. Figure 2-5 shows total and partial current densities of a mixed electrode. In free corrosion 7 = 0. The free corrosion potential lies between the equilibrium potentials of the partial reactions and U Q, and corresponds in this case to the rest potential. Deviations from the rest potential are called polarization voltage or polarization. At the rest potential = ly l, which is the corrosion rate in free corrosion. With anodic polarization resulting from positive total current densities, the potential becomes more positive and the corrosion rate greater. This effect is known as anodic enhancement of corrosion. For a quantitative view, it is unfortunately often overlooked that neither the corrosion rate nor its increase corresponds to anodic total current density unless the cathodic partial current is negligibly small. Quantitative forecasts are possible only if the Jq U) curve is known. [Pg.44]

The role that acid and base catalysts play can be quantitatively studied by kinetic techniques. It is possible to recognize several distinct types of catalysis by acids and bases. The term specie acid catalysis is used when the reaction rate is dependent on the equilibrium for protonation of the reactant. This type of catalysis is independent of the concentration and specific structure of the various proton donors present in solution. Specific acid catalysis is governed by the hydrogen-ion concentration (pH) of the solution. For example, for a series of reactions in an aqueous buffer system, flie rate of flie reaction would be a fimetion of the pH, but not of the concentration or identity of the acidic and basic components of the buffer. The kinetic expression for any such reaction will include a term for hydrogen-ion concentration, [H+]. The term general acid catalysis is used when the nature and concentration of proton donors present in solution affect the reaction rate. The kinetic expression for such a reaction will include a term for each of the potential proton donors that acts as a catalyst. The terms specific base catalysis and general base catalysis apply in the same way to base-catalyzed reactions. [Pg.229]

It is apparent (Fig. 1.21) that at potentials removed from the equilibrium potential see equation 1.30) the rate of charge transfer of (a) silver cations from the metal to the solution (anodic reaction), (b) silver aquo cations from the solution to the metal (cathodic reaction) and (c) electrons through the metallic circuit from anode to cathode, are equal, so that any one may be used to evaluate the rates of the others. The rate is most conveniently determined from the rate of transfer of electrons in the metallic circuit (the current 1) by means of an ammeter, and if / is maintained constant it can eilso be used to eveduate the extent. A more precise method of determining the quantity of charge transferred is the coulometer, in which the extent of a single well-defined reaction is determined accurately, e.g. by the quantity of metal electrodeposited, by the volume of gas evolved, etc. The reaction Ag (aq.) -t- e = Ag is utilised in the silver coulometer, and provides one of the most accurate methods of determining the extent of charge transfer. [Pg.80]

Fig. 20.16 Potential energy against distance curves Morse curves), (a) No potential dilTerence (p.z.c.), (b) at the equilibrium potential when / = / and the heights of the energy barrier are the same for both reactions, but p.z.c W potential made more negative than E q and (d) potential made more positive than E. The p.z.c. has been taken as zero potential, and A, and h,. are the heights of the potential barriersj or the anodic and cathodic reactions, respectively / is the rate of the cathodic reaction and / the rate of the anodic reaction (after Bockris... Fig. 20.16 Potential energy against distance curves Morse curves), (a) No potential dilTerence (p.z.c.), (b) at the equilibrium potential when / = / and the heights of the energy barrier are the same for both reactions, but p.z.c W potential made more negative than E q and (d) potential made more positive than E. The p.z.c. has been taken as zero potential, and A, and h,. are the heights of the potential barriersj or the anodic and cathodic reactions, respectively / is the rate of the cathodic reaction and / the rate of the anodic reaction (after Bockris...
When an electrode is at equilibrium the rate per unit area of the cathodic reaction equals that of the anodic reaction (the partial currents) and there is no net transfer of charge the potential of the electrode is the equilibrium potential and it is said to be unpolarised ... [Pg.1196]

Equilibrium Potential ( o) the electrode potential of an unpolarised electrode at equilibrium. At the equilibrium potential there is no net reaction. The potential is controlled by the same electrode reaction occurring anodically and cathodically at an equal rate, called the exchange current density. [Pg.1368]

For thermodynamic reasons, an electrochemical reaction can occur only within a dehnite region of potentials a cathodic reaction at electrode potentials more negative, an anodic reaction at potentials more positive than the equilibrium potential of that reaction. This condition only implies a possibility that the electrode reaction will occur in the corresponding region of potentials it provides no indication of whether the reaction will actually occur, and if so, what its rate will be. The answers are provided not by thermodynamics but by electrochemical kinetics. [Pg.79]

When anodic polarization is appreciable, the reverse (cathodic) partial CD becomes exceedingly low and practically, we can sume that i i when cathodic polarization is appreciable, we can assume that i i. Thus, the total range of potential can be divided into three regions one region at low values of polarization (to both sides of the equilibrium potential), where the two partial reactions occur at comparable rates,... [Pg.80]

Electrode reactions are heterogeneous since they occur at interfaces between dissimilar phases. During current flow the surface concentrations Cg j of the substances involved in the reaction change relative to the initial (bulk) concentrations Cy p Hence, the value of the equilibrium potential is defined by the Nemst equation changes, and a special type of polarization arises where the shift of electrode potential is due to a change in equilibrium potential of the electrode. The surface concentrations that are established are determined by the balance between electrode reaction rates and the supply or elimination of each substance by diffusion [Eq. (4.9)]. Hence, this type of polarization, is called diffusional concentration polarization or simply concentration polarization. (Here we must take into account that another type of concentration polarization exists which is not tied to diffusion processes see Section 13.5.)... [Pg.81]

The specific rate of an electrode reaction depends not only on electrode polarization but also on tfie reactant concentrations. Changes in reactant concentrations affect not only reaction rates but also the values of equilibrium potentials. To differentiate both these influences, kinetic equations are generally used (especially at high values of polarization), relating the current density not with the value of polarization AE but with the potential of the electrode E ... [Pg.84]

These equations show that whereas the kinetic coefficients of an individual reaction can assume any value, the coefficients of its forward and reverse process are always interrelated. The relation between the standard equilibrium potential EP and the rate constants and is analogous to the well-known physicochemical relation between equilibrium constant K and the rate constants of the forward and reverse process. [Pg.87]

Electrochemical reactions differ fundamentally from chemical reactions in that the kinetic parameters are not constant (i.e., they are not rate constants ) but depend on the electrode potential. In the typical case this dependence is described by Eq. (6.33). This dependence has an important consequence At given arbitrary values of the concentrations d c, an equilibrium potential Eq exists in the case of electrochemical reactions which is the potential at which substances A and D are in equilibrium with each other. At this point (Eq) the intermediate B is in common equilibrium with substances A and D. For this equilibrium concentration we obtain from Eqs. (13.9) and (13.11),... [Pg.223]

At mercury and graphite electrodes the kinetics of reactions (15.21) and (15.22) can be studied separately (in different regions of potential). It follows from the experimental data (Fig. 15.6) that in acidic solutions the slope b 0.12 V. The reaction rate is proportional to the oxygen partial pressure (its solution concentration). At a given current density the electrode potential is independent of solution pH because of the shift of equilibrium potential, the electrode s polarization decreases by 0.06 V when the pH is raised by a unit. These data indicate that the rate-determining step is addition of the first electron to the oxygen molecule ... [Pg.276]

Equation (6.13), in fact, reflects the physical nature of the electrode process, consisting of the anode (the first term) and cathode (the second term) reactions. At equilibrium potential, E = Eq, the rates of both reactions are equal and the net current is zero, although both anode and cathode currents are nonzero and are equal to the exchange current f. With the variation of the electrode potential, the rate of one of these reactions increases, whereas that of the other decreases. At sufficiently large electrode polarization (i.e., deviation of the electrode potential from Eg), one of these processes dominates (depending on the sign of E - Eg) and the dependence of the net current on the potential is approximately exponential (Tafel equation). [Pg.637]

Catalysis opens reaction pathways that are not accessible to uncatalysed reactions. It should be self-evident that thermodynamics predict whether a reaction can occur. So, catalysis influences reaction rates (and as a consequence selectivities), but the thermodynamic equilibrium still is the boundary. Catalysis plays a key role in chemical conversions, although it is fair to state that it is not applied to the same degree in all sectors of the chemical industry. While in bulk chemicals production catalytic processes constitute over 80 % of the industrially applied processes, in fine chemicals and specialty chemicals production catalysis plays a relatively modest role. In the pharmaceutical industry its role is even smaller. It is the opinion of the authors that catalysis has a large potential in these areas and that its role will increase drastically in the coming years. However, catalysis is a multidisciplinary subject that has a lot of aspects unfamiliar to synthetic chemists. Therefore, it was decided to treat catalysis in a separate chapter. [Pg.59]

This last equation contains the two essential activation terms met in electrocatalysis an exponential function of the electrode potential E and an exponential function of the chemical activation energy AGj (defined as the activation energy at the standard equilibrium potential). By modifying the nature and structure of the electrode material (the catalyst), one may decrease AGq, thus increasing jo, as a result of the catalytic properties of the electrode. This leads to an increase in the reaction rate j. [Pg.346]

The reaction rate is given by the product of F with the concentration of the ions in the bulk. The latter are in equilibrium with the well - otherwise the rate is determined by mass transport. Setting the chemical potential in the well equal to that in the bulk gives ... [Pg.179]


See other pages where Equilibrium potential, reaction rates is mentioned: [Pg.161]    [Pg.4]    [Pg.91]    [Pg.664]    [Pg.830]    [Pg.1094]    [Pg.36]    [Pg.42]    [Pg.119]    [Pg.122]    [Pg.1163]    [Pg.1193]    [Pg.1253]    [Pg.236]    [Pg.236]    [Pg.157]    [Pg.151]    [Pg.265]    [Pg.224]    [Pg.153]    [Pg.79]    [Pg.236]    [Pg.278]    [Pg.695]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Equilibrium potentials

Rate-equilibrium

Reaction rates equilibrium

© 2024 chempedia.info