Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxide nucleophilic enantioselective

Scheme 5. First nucleophilic enantioselective epoxide opening with enantiopure transition metal Lewis acid 29. Scheme 5. First nucleophilic enantioselective epoxide opening with enantiopure transition metal Lewis acid 29.
Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

In general, 2-substituted allylic alcohols are epoxidized in good enantioselectivity. Like glycidol, however, the product epoxides are susceptible to ring opening via nucleophilic attack at the C-3 position. Results of the AE reaction on 2-methyl-2-propene-l-ol followed by derivatization of the resulting epoxy alcohol are shown in Table 1.6.1. Other examples are shown below. [Pg.54]

Despite these significant results in azide additions, only limited success has been obtained in enantioselective addition of other sp2-hybridized nitrogen-centered nucleophiles to meso-epoxides. Bartoli et al. demonstrated that aniline was a... [Pg.232]

One of the earliest useful methods for asymmetric opening of meso-epoxides with sulfur-centered nucleophiles was reported by Yamashita and Mukaiyama, who employed a heterogeneous zinc tartrate catalyst (Scheme 7.10) [20]. Epoxides other than cydohexene oxide were not investigated, and the enantioselectivity depended strongly on the identity of the thiol. [Pg.236]

Jacobsen demonstrated that the (salen)Cr system used to effect intermolecular, cooperative asymmetric azidolysis of meso-epoxides (Schemes 7.3 and 7.5) could be applied to sulfur-centered nucleophiles (Scheme 7.13). In order to overcome moderate enantioselectivity (<60% ee), a dithiol nucleophile was employed as part of a double resolution strategy in which the minor enantiomer of the monoaddition product reacts preferentially to form the meso- bis-addition product, thereby increasing the ee of the C2-symmetric bis-addition product. Enantiopure 1,2-mer-capto alcohols (>99% ee) were obtained from the meso-epoxide in ca. 50% overall yield by a burdensome (though effective) multistep sequence, [23]. [Pg.236]

The first example of asymmetric catalytic ring-opening of epoxides with sp2-hybridized carbon-centered nucleophiles was reported by Oguni, who demonstrated that phenyllithium and a chiral Schiff base ligand undergo reaction to form a stable system that can be used to catalyze the enantioselective addition of phenyllithium to meso-epoxides (Scheme 7.24) [48]. Oguni proposed that phenyllithium... [Pg.244]

In the present study the dimer (salen)CoAlX3 showed enhanced activity and enantioselectivity. The catalyst can be synthesized easily by readily commercially available precatalyst Co(salen) in both enantiomeric forms. Potentially, the catalyst may be used on an industrial scale and could be recycled. Currently we are looking for the applicability of the catalyst to asymmetric reaction of terminal and meso epoxides with other nucleophiles and related electrophile-nucleophile reactions. [Pg.208]

The epoxidation of electon-defident olefins using a nucleophilic oxidant such as an alkyl hydroperoxide is generally nonstereospecific epoxidation of both cis- and /nmv- ,/3-unsatii rated ketones gives the trans-epoxide preferentially. However, the epoxidation of cis-ofi-unsaturated ketones catalyzed by Yb-(40) gives civ-epoxides preferentially, with high enantioselectivity, because the oxidation occurs in the coordination sphere of the ytterbium ion (Scheme 26).132... [Pg.225]

A heterobimetallic BINOL-Ga/Li complex 53 has been developed for the enantioselective ARO of meso-cpoxides (BINOL = l,T-bi(2-naphthol)).278 Using />-methoxyphenol as the nucleophile, this etherification reaction was observed to take place with a high level of asymmetric induction. An improved catalyst 54 has also been reported that exhibits greater stability under the reaction conditions and delivers higher yields and ee s (Equation (78)).279 A simple catalyst derived from Sc(OTf)3 and the chiral bipyridine ligand 52 has been shown to be effective for the ARO of aryl-substituted /// -epoxides with aliphatic alcohols to give high ee s (Equation (79)).280... [Pg.671]

Using the catalytic system described above, the enantioselective opening of meso epoxides could also be pursued. Although many excellent examples of ring-opening of meso epoxides by Sn2 reactions have recently been reported, the reaction planned here is conceptually different [40]. In the SN2 reaction, the path of the incoming nucleophile has to be controlled. In the titanocene-catalyzed reaction, the intermediate radical has to be formed selectively. If an intermediate similar to that invoked in the Bartmann ring-open-... [Pg.445]

Turning to enzymatic hydration, we see from the data in Table 10.1 that phenanthrene 9,10-oxide Fig. 10.10, 10.29) is an excellent substrate for epoxide hydrolase. Comparison of enzymatic hydration of the three isomeric phenanthrene oxides shows that the Vmax with the 9,10-oxide is greater than with the 1,2- or the 3,4-oxide the affinity was higher as well, as assessed by the tenfold lower Km value [90]. Furthermore, phenanthrene 9,10-oxide has a plane of symmetry and is, thus, an achiral molecule, but hydration gives rise to a chiral metabolite with high product enantioselectivity. Indeed, nucleophilic attack by epoxide hydrolase occurs at C(9) with inversion of configuration i.e., from below the oxirane ring as shown in Fig. 10.10) to yield the C-H9.S, 10.S )-9,10-dihydro-9,10-diol (10.30) [91],... [Pg.628]

The base-catalyzed hydration of 2-phenyloxirane involves nucleophilic attack preferentially at C(3) (0-C(3) cleavage), but with only partial regio-selectivity. Acid-catalyzed hydration is mainly by 0-C(2) cleavage. The hydration of 2-phenyloxirane catalyzed by epoxide hydrolase is characterized by its very high regioselectivity for the less-hindered, unsubstituted C(3) [175] [176], involving retention of configuration at C(2). In other words, (R)-and (5)-2-phenyloxirane are metabolized to (/ )- and (S)-l-phenylethane-l,2-diol (10.118), respectively. Substrate enantioselectivity was also character-... [Pg.656]

ARO reaction with phenols and alcohols as nucleophiles is a logical extension of HKR of epoxides to synthesize libraries of stereochemically defined ring-opened products in high optical purity. To this effect Annis and Jacobsen [69] used their polymer-supported Co(salen) complex 36 as catalyst for kinetic resolution of epoxides with phenols to give l-aiyloxy-2-alcohols in high yield, purity and ee (Scheme 17). Conducting the same reaction in the presence of tris(trifluoromethyl)methanol, a volatile, nonnucleophilic protic acid additive accelerates KR reaction with no compromise with enantioselectivity and yield. Presumably the additive helped in maintaining the Co(III) oxidation state of the catalyst. [Pg.320]

Pakulskia, Z. Pietrusiewicz, K. M. (2004) Enantioselective desymmetrization of phospholene meso-epoxide by nucleophilic opening of the epoxide.. Tetrahedron ... [Pg.338]


See other pages where Epoxide nucleophilic enantioselective is mentioned: [Pg.229]    [Pg.42]    [Pg.46]    [Pg.88]    [Pg.27]    [Pg.8]    [Pg.229]    [Pg.231]    [Pg.233]    [Pg.234]    [Pg.239]    [Pg.241]    [Pg.242]    [Pg.243]    [Pg.243]    [Pg.247]    [Pg.247]    [Pg.247]    [Pg.249]    [Pg.257]    [Pg.258]    [Pg.21]    [Pg.1336]    [Pg.1338]    [Pg.527]    [Pg.48]    [Pg.149]    [Pg.114]    [Pg.37]    [Pg.315]    [Pg.145]    [Pg.208]    [Pg.339]    [Pg.279]    [Pg.282]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Enantioselective epoxide

Enantioselectivity epoxidation

Epoxidation enantioselective

Epoxidations enantioselectivity

Epoxide nucleophilic

Epoxides nucleophilic epoxidations

Nucleophiles epoxides

Nucleophilic epoxidation

© 2024 chempedia.info