Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epichlorohydrin, polymerization

We wish to stress this point because one can find examples of improper treatment of experimental data in the literature on cationic polymerization. For instance, in a recent paper on the polymerization of a-epichlorohydrin the authors observed limited conversions of monomer 21). The polymer yield was increasing with decreasing temperatures. The authors assumed that the monomer concentration at the plateau was the equilibrium monomer concentration, and calculated thermodynamic parameters . The ring strain, expressed by AH thus obtained for a-epichlorohydrin was unrealistically low (only —23 kJ mol-1) when compared with heats of polymerization of other 3-membered cyclic ethers (cf. Table 2.7). Other reports on a-epichlorohydrin polymerization have shown that nearly quantitative conversions are possible even at higher temperatures, provided that termination is suppressed22 23). [Pg.12]

The boric and sulfuric acids are recycled to a HBF solution by reaction with CaF2. As a strong acid, fluoroboric acid is frequently used as an acid catalyst, eg, in synthesizing mixed polyol esters (29). This process provides an inexpensive route to confectioner s hard-butter compositions which are substitutes for cocoa butter in chocolate candies (see Chocolate and cocoa). Epichlorohydrin is polymerized in the presence of HBF for eventual conversion to polyglycidyl ethers (30) (see Chlorohydrins). A more concentrated solution, 61—71% HBF, catalyzes the addition of CO and water to olefins under pressure to form neo acids (31) (see Carboxylic acids). [Pg.165]

The majority of 2-methylphenol is used in the production of novolak phenoHc resins. High purity novolaks based on 2-methylphenol are used in photoresist appHcations (37). Novolaks based on 2-methylphenol are also epoxidized with epichlorohydrin, yielding epoxy resins after dehydrohalogenation, which are used as encapsulating resins in the electronics industry. Other uses of 2-methylphenol include its conversion to a dinitro compound, 4,6-dinitro-2-methylphenol [534-52-1] (DNOC), which is used as a herbicide (38). DNOC is also used to a limited extent as a polymerization inhibitor in the production of styrene, but this use is expected to decline because of concerns about the toxicity of the dinitro derivative. [Pg.67]

Allyl Glycidyl Ether. This ether is used mainly as a raw material for silane coupling agents and epichlorohydrin mbber. Epichlorohydrin mbber is synthesized by polymerizing the epoxy group of epichlorohydrin, ethylene oxide, propylene oxide, and aHyl glycidyl ether, AGE, with an aluminum alkyl catalyst (36). This mbber has high cold-resistance. [Pg.77]

Epichlorohydrin Elastomers without AGE. ECH homopolymer, polyepichlorohydrin [24969-06-0] (1), and ECH—EO copolymer, poly(epichlorohydrin- (9-ethylene oxide) [24969-10-6] (2), are linear and amorphous. Because it is unsymmetrical, ECH monomer can polymerize in the head-to-head, tail-to-tail, or head-to-tail fashion. The commercial polymer is 97—99% head-to-tail, and has been shown to be stereorandom and atactic (15—17). Only low degrees of crystallinity are present in commercial ECH homopolymers the amorphous product is preferred. [Pg.553]

Epichlorohydrin Elastomers without AGE. Polymerization on a commercial scale is done as either a solution or slurry process at 40—130°C in an aromatic, ahphatic, or ether solvent. Typical solvents are toluene, benzene, heptane, and diethyl ether. Trialkylaluniinum-water and triaLkylaluminum—water—acetylacetone catalysts are employed. A cationic, coordination mechanism is proposed for chain propagation. The product is isolated by steam coagulation. Polymerization is done as a continuous process in which the solvent, catalyst, and monomer are fed to a back-mixed reactor. Pinal product composition of ECH—EO is determined by careful control of the unreacted, or background, monomer in the reactor. In the manufacture of copolymers, the relative reactivity ratios must be considered. The reactivity ratio of EO to ECH has been estimated to be approximately 7 (35—37). [Pg.555]

The mechanism of chemical modification reactions of PS were determined using toluene as a model compound with EC in the presence of BF3-0(C2H5)2 catalyst and the kinetics and mechanism of the alkylation reaction were also determined under similar conditions [53-55]. The alkylation reaction of toluene, with epichlorohydrin, underwent polymerization of EC in the presence of Lewis acid catalysis at a low temperature (273 K) as depicted in Scheme (9). [Pg.263]

In contrast to the substituted PPO s, It Is theoretically possible to obtain the same substituted PECH s by homopolymerization of the corresponding mesogenic oxirane, or by its copolymerization with epichlorohydrin. We have attempted these polymerizations in order to better interpret the thermal behavior of the more complicated copolymers that we have obtained by polymer analogous reactions. Homopolymerization would be instructive because the incorporation of nonmesogenic units into liquid crystalline homopolymers doesn t as a rule change the type of mesophase obtained (5). [Pg.107]

Fluorescence Intensities. The fluorescence from polymeric films of bisphenol A-epichlorohydrin condensate 1 (Eponol-55-B-40,... [Pg.109]

Other polymerizations of commercial interest are the polymerizations of epichlorohydrin with aluminum or zinc alkyls with... [Pg.25]

It has been shown for many metal halides and monomers that binary mixtures of these can be prepared (usually in a solvent) without any polymerization taking place. Such a quiescent mixture can be made to react by the addition of a suitable third compound, which is called the co-catalyst. This term is preferable to the word promoter , because in certain contexts a substance is called promoter which enhances the rate or yield of a reaction that will also go in the absence of the promoter herein lies the true distinction between promoter and co-catalyst [28]. (For example, small quantities of epoxides or epichlorohydrin act as promoters in the cationic polymerization of tetrahydrofuran.) I will take it that in the above quotation the word promoter was inadvertently used in place of co-catalyst , for only thus does it become really meaningful. [Pg.116]

The cationic ring-opening polymerization of epichlorohydrin in conjunction with a glycol or water as a modifier produced hydroxyl-terminated epichlorohydrin (HTE) liquid polymers (1-2). Hydroxyl-terminated polyethers of other alkylene oxides (3 4), oxetane and its derivatives (5 6), and copolymers of tetrahydrofuran (7-15) have also been reported. These hydroxyl-terminated polyethers are theoretically difunctional and used as reactive prepolymers. [Pg.199]

HTE liquid polymers were synthesized by cationic ring-opening polymerization of epichlorohydrin (ECH) in the presence of water or ethylene glycol (EG) as a modifier (1). Cyclic oligomers were removed by extraction. After extraction, the liquid polymers were essentially free from cyclic oligomers as determined by gel permeation chromatography (GPC) (Figure 1). [Pg.200]

The reaction actually involves the sodium salt of bisphenol A since polymerization is carried out in the presence of an equivalent of sodium hydroxide. Reaction temperatures are in the range 50-95°C. Side reactions (hydrolysis of epichlorohydrin, reaction of epichlorohydrin with hydroxyl groups of polymer or impurities) as well as the stoichiometric ratio need to be controlled to produce a prepolymer with two epoxide end groups. Either liquid or solid prepolymers are produced by control of molecular weight typical values of n are less than 1 for liquid prepolymers and in the range 2-30 for solid prepolymers. [Pg.128]

Potassium carboxylate groups introduced onto the surface of carbon fibers initiated anionic polymerization of epoxides (e.g., styrene oxide, epichlorohydrin, and glycidyl phenyl ethers) and cyclic acid anhydrides (e.g., maleic anhydride, succinic anhydride, and phthalic anhydride) in the presence of 18-crown-6 [41]. [Pg.115]

Polyethers are prepared by the ring opening polymerization of three, four, five, seven, and higher member cyclic ethers. Polyalkylene oxides from ethylene or propylene oxide and from epichlorohydrin are the most common commercial materials. They seem to be the most reactive alkylene oxides and can be polymerized by cationic, anionic, and coordinated nucleophilic mechanisms. For example, ethylene oxide is polymerized by an alkaline catalyst to generate a living polymer in Figure 1.1. Upon addition of a second alkylene oxide monomer, it is possible to produce a block copolymer (Fig. 1.2). [Pg.43]


See other pages where Epichlorohydrin, polymerization is mentioned: [Pg.318]    [Pg.37]    [Pg.20]    [Pg.11]    [Pg.865]    [Pg.390]    [Pg.315]    [Pg.79]    [Pg.128]    [Pg.288]    [Pg.53]    [Pg.70]    [Pg.199]    [Pg.137]    [Pg.306]    [Pg.194]    [Pg.299]    [Pg.618]    [Pg.400]    [Pg.432]    [Pg.4]    [Pg.6]    [Pg.7]    [Pg.9]    [Pg.597]    [Pg.267]   
See also in sourсe #XX -- [ Pg.6 , Pg.97 , Pg.130 ]

See also in sourсe #XX -- [ Pg.28 ]

See also in sourсe #XX -- [ Pg.12 , Pg.52 , Pg.55 ]

See also in sourсe #XX -- [ Pg.435 ]




SEARCH



Epichlorohydrin

Epichlorohydrin cationic polymerization

Epichlorohydrin cationic polymerization mechanism

Epichlorohydrin cationic polymerization mechanism initiation

Epichlorohydrin, polymerization oxetane

Epichlorohydrin, polymerization tetrahydrofuran

Epichlorohydrin, polymerization with

Epichlorohydrin, polymerization with amines

Epichlorohydrine

Epichlorohydrins

Polymerization of epichlorohydrin

© 2024 chempedia.info