Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes covalent intermediate

Lowe asserts that stereochemical analyses have effectively excluded the intervention of a nucleotidyl-enzyme covalent intermediate in the reaction of cAMP phosphodiesterase. From our discussion of the mechanisms shown in Scheme 37, we can see that this is not necessarily true. However, there must be mechanistic gain to outweigh the disadvantage inherent in a multistep pseudorotatory mechanism. Our present state of knowledge on the non-enzymic reactivity of six-membered phosphates does not allow a decision on what this gain may be. Indeed the variety of mechanisms proposed (and shown in Scheme 37) results in part from our lack of knowledge of the reactivity of six-membered phosphorus species. [Pg.226]

Definitive identification of lysine as the modified active-site residue has come from radioisotope-labeling studies. NaBH4 reduction of the aldolase Schiff base intermediate formed from C-labeled dihydroxyacetone-P yields an enzyme covalently labeled with C. Acid hydrolysis of the inactivated enzyme liberates a novel C-labeled amino acid, N -dihydroxypropyl-L-lysine. This is the product anticipated from reduction of the Schiff base formed between a lysine residue and the C-labeled dihydroxy-acetone-P. (The phosphate group is lost during acid hydrolysis of the inactivated enzyme.) The use of C labeling in a case such as this facilitates the separation and identification of the telltale amino acid. [Pg.622]

Catalysis by enzymes that proceeds via a unique reaction mechanism typically occurs when the transition state intermediate forms a covalent bond with the enzyme (covalent catalysis). The catalytic mechanism of the serine protease chymotrypsin (Figure 7-7) illustrates how an enzyme utilizes covalent catalysis to provide a unique reaction pathway. [Pg.63]

It is worth noting here that inhibitors that interact with enzyme active site functionalities in ways that mimic the structure of covalent intermediates of catalysis can bind with very high affinity. This was seen in Chapter 1 with the example of statine-and hydroxyethylene-based inhibitors of aspartic proteases other examples of this inhibitor design strategy will be seen in subsequent chapters of this text. [Pg.29]

As a simple model for the enzyme penicillinase, Tutt and Schwartz (1970, 1971) investigated the effect of cycloheptaamylose on the hydrolysis of a series of penicillins. As illustrated in Scheme III, the alkaline hydrolysis of penicillins is first-order in both substrate and hydroxide ion and proceeds with cleavage of the /3-lactam ring to produce penicilloic acid. In the presence of an excess of cycloheptaamylose, the rate of disappearance of penicillin follows saturation kinetics as the cycloheptaamylose concentration is varied. By analogy to the hydrolysis of the phenyl acetates, this saturation behavior may be explained by inclusion of the penicillin side chain (the R group) within the cycloheptaamylose cavity prior to nucleophilic attack by a cycloheptaamylose alkoxide ion at the /3-lactam carbonyl. The presence of a covalent intermediate on the reaction pathway, although not isolated, was implicated by the observation that the rate of disappearance of penicillin is always greater than the rate of appearance of free penicilloic acid. [Pg.231]

More recently, Kaiser and coworkers reported enantiomeric specificity in the reaction of cyclohexaamylose with 3-carboxy-2,2,5,5-tetramethyl-pyrrolidin-l-oxy m-nitrophenyl ester (1), a spin label useful for identifying enzyme-substrate interactions (Flohr et al., 1971). In this case, the catalytic mechanism is identical to the scheme derived for the reactions of the cycloamyloses with phenyl acetates. In fact, the covalent intermediate, an acyl-cyclohexaamylose, was isolated. Maximal rate constants for appearance of m-nitrophenol at pH 8.62 (fc2), rate constants for hydrolysis of the covalent intermediate (fc3), and substrate binding constants (Kd) for the two enantiomers are presented in Table VIII. Significantly, specificity appears in the rates of acylation (fc2) rather than in either the strength of binding or the rate of deacylation. [Pg.233]

Organophosphate and carbamate pesticides are potent inhibitors of the enzyme cholinesterase. The inhibition of cholinesterase activity by the pesticide leads to the formation of stable covalent intermediates such as phosphoryl-enzyme complexes, which makes the hydrolysis of the substrate very slow. Both organophosphorus and carbamate pesticides can react with AChE in the same manner because the acetylation of the serine residue at the catalytic center is analogous to phosphorylation and carbamylation. Carbamated enzyme can restore its catalytic activity more rapidly than phosphorylated enzyme [17,42], Kok and Hasirci [43] reported that the total anti-cholinesterase activity of binary pesticide mixtures was lower than the sum of the individual inhibition values. [Pg.58]

The calculations found there was no covalent intermediate in the viral neuraminidase reaction and the intermediate was more likely to be hydroxylated directly. Because there is only a small energy difference between the two options (formation of a covalent bond or direct hydroxylation) Thomas et al. proposed it might be possible to design inhibitors covalently bound to the enzyme. [Pg.193]

An interesting dinically useful prodrug is 5-fluorouracil, which is converted in vivo to 5-fluoro-2 -deoxyuridine 5 -monophosphate, a potent irreversible inactivator of thymidylate synthase It is sometimes charaderized as a dead end inactivator rather than a suicide substrate since no electrophile is unmasked during attempted catalytic turnover. Rathei since a fluorine atom replaces the proton found on the normal substrate enzyme-catalyzed deprotonation at the 5 -position of uracil cannot occur. The enzyme-inactivator covalent addud (analogous to the normal enzyme-substrate covalent intermediate) therefore cannot break down and has reached a dead end (R. R. Rando, Mechanism-Based Enzyme Inadivators , Pharm. Rev. 1984,36,111-142). [Pg.367]

The serine hydrolases, threonine hydrolases, and cysteine hydrolases, the attacking nucleophile of which is a serine or threonine OH group or a cysteine thiolate group, respectively, and which form an intermediate covalent complex (i. e., the acylated enzyme). Here, an activated H20 molecule enters the catalytic cycle in the second step, i.e., hydrolysis of the covalent intermediate to regenerate the enzyme. [Pg.67]

To prove that any complex which formed at the low temperature was both productive and covalent, two additional experiments were carried out. First, an attempt was made to wash the substrate out of the enzyme at low temperature. The crystal was held at -55 C and substrate-free 70% methanol was flowed over it for 4 days. There was no change in the substrate-sensitive reflections, which were monitored every 8 hours during this period, and when another data set was collected at the end of the wash, it revealed the substrate still bound in the active site. However, when the crystal was allowed to warm up to - 10°C, the monitor reflections immediately began to change in intensity, back to the values they had for the native enzyme. In less than 20 hours all of them had returned to these values, and a final set of data was collected as expected, on processing it showed an empty active site and a native elastase structure. These two control experiments indicated that the structure that formed when elastase was exposed to the ester substrate was covalent, and that the covalent intermediate would undergo hydrolysis (presum-... [Pg.331]

Unfortunately, the size of the crystallographic problem presented by elastase coupled with the relatively short lifedme of the acyl-enzyme indicated that higher resolution X-ray data would be difficult to obtain without use of much lower temperatures or multidetector techniques to increase the rate of data acquisition. However, it was observed that the acyl-enzyme stability was a consequence of the known kinetic parameters for elastase action on ester substrates. Hydrolysis of esters by the enzyme involves both the formation and breakdown of the covalent intermediate, and even in alcohol-water mixtures at subzero temperatures the rate-limidng step is deacylation. It is this step which is most seriously affected by temperature, allowing the acyl-enzyme to accumulate relatively rapidly at — 55°C but to break down very slowly. Amide substrates display different kinetic behavior the slow step is acylation itself. It was predicted that use of a />-nitrophenyl amid substrate would give the structure of the pre-acyl-enzyme Michaelis complex or even the putadve tetrahedral intermediate (Alber et ai, 1976), but this experiment has not yet been carried out. Instead, over the following 7 years, attention shifted to the smaller enzyme bovine pancreatic ribonuclease A. [Pg.332]

As discussed above, proteases are peptide bond hydrolases and act as catalysts in this reaction. Consequently, as catalysts they also have the potential to catalyze the reverse reaction, the formation of a peptide bond. Peptide synthesis with proteases can occur via one of two routes either in an equilibrium controlled or a kinetically controlled manner 60). In the kinetically controlled process, the enzyme acts as a transferase. The protease catalyzes the transfer of an acyl group to a nucleophile. This requires an activated substrate preferably in the form of an ester and a protected P carboxyl group. This process occurs through an acyl covalent intermediate. Hence, for kineticmly controlled reactions the eii me must go through an acyl intermediate in its mechanism and thus only serine and cysteine proteases are of use. In equilibrium controlled synthesis, the enzyme serves omy to expedite the rate at which the equilibrium is reached, however, the position of the equilibrium is unaffected by the protease. [Pg.75]

PING PONG HALF-REACTIONS. Many enzymes operate by double-displacement mechanisms involving covalent enzyme-substrate intermediates as shown in the following scheme ... [Pg.330]


See other pages where Enzymes covalent intermediate is mentioned: [Pg.173]    [Pg.117]    [Pg.298]    [Pg.133]    [Pg.141]    [Pg.142]    [Pg.28]    [Pg.437]    [Pg.649]    [Pg.173]    [Pg.117]    [Pg.298]    [Pg.133]    [Pg.141]    [Pg.142]    [Pg.28]    [Pg.437]    [Pg.649]    [Pg.14]    [Pg.509]    [Pg.510]    [Pg.510]    [Pg.520]    [Pg.634]    [Pg.29]    [Pg.121]    [Pg.105]    [Pg.157]    [Pg.120]    [Pg.140]    [Pg.79]    [Pg.92]    [Pg.257]    [Pg.332]    [Pg.201]    [Pg.160]    [Pg.279]    [Pg.45]    [Pg.97]    [Pg.330]    [Pg.331]    [Pg.370]    [Pg.404]    [Pg.615]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Covalent catalysis acyl-enzyme intermediate

Enzyme covalently bound intermediates

INTERMEDIATES, COVALENT ENZYME-SUBSTRATE

Synthesis enzyme covalent intermediate

© 2024 chempedia.info