Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme, oxidative content

No differences were observed5 in the enzymic oxidation of putrescine and TV-methylputrescine by plant extracts of a cultivar of N. tabacum that had a high nicotine content and one with a high content of nornicotine (7). Thus a high nornicotine (7) content cannot be attributed to direct oxidation of putrescine, and this supports evidence which shows nornicotine (7) to be a demethylation product of nicotine. [Pg.2]

Jervis used porous silica coated with chemisorbed polyacrylhydrazide for immobilization of adenosine monophosphate (AMP) [117]. After periodate oxidation of its ribose residue the ligand was coupled to the carrier and used for isolation of lactate dehydrogenase from rabbit muscle. The specific capacity was 2 mg of protein/g adsorbent with a ligand content of 10 pmol/g, whereas recovery of enzymatic activity after elution was 85%. Hipwell et al. [118] found that for effective binding of lactate dehydrogenases on AMP-o-aminoalkyl-Sepharose the spacer arm length required at least 4 methylene links. Apparently, a macromolecule of polyacrylhydrazide acts itself like an extended spacer arm and thus allow AMP to bind the enzyme. [Pg.169]

Creatine supplementation has been shown to increase the rate of PCr resynthesis in the recovery period after ischemic exercise (Greenhaff et al., 1993a). This could be attributed to an acceleration of oxidative phosphorylation by increased free creatine content available to the mitochondrial fraction of the creatine kinase enzyme, as previously suggested (Bessman and Fonyo, 1966). [Pg.255]

The major biochemical features of neutrophils are summarized in Table 52-8. Prominent feamres are active aerobic glycolysis, active pentose phosphate pathway, moderately active oxidative phosphorylation (because mitochondria are relatively sparse), and a high content of lysosomal enzymes. Many of the enzymes listed in Table 52-4 are also of importance in the oxidative metabolism of neutrophils (see below). Table 52-9 summarizes the functions of some proteins that are relatively unique to neutrophils. [Pg.620]

The conclusions about the role phenol plays as an antioxidant in real food systems are often reached by comparing the oxidative behaviour of food samples with different contents of phenolic compounds. The variations in phenolics are usually obtained by using products made from different raw materials (e.g. malts containing different levels of polyphenols for production of beer (Andersen et al, 2000)). However, using different raw materials not only affects the levels of phenols, but also affects the levels of transition metals and enzymes which can have profound effects on the oxidative behaviour of the finished product. It is, therefore, often advantageous to study the oxidative behaviour of samples derived from a single batch of production where the level of phenols has either been increased by addition or decreased... [Pg.330]

In addition to a-l-PI, there are other examples of the presence of Met(O) residues in proteins isolated from biological material. Proteins found in lens tissue are particularly susceptible to photooxidation and because of the long half-lives of these proteins, any oxidation could be especially detrimental. In this tissue, protein synthesis is localized to the outer region of the tissue and most proteins are stable for the life of the tissue - ". It is thus somewhat surprising that not only is there no Met(O) residues in the young normal human lens but even in the old normal human lens only a small amount of Met(O) residues is found . However, in the cataractous lens as much as 65% of the Met residues of the lens proteins are found in the form of Met(0) . Whether this increase in Met(O) content in these proteins is a cause or a result of the cataracts is not known. In order to determine whether the high content of Met(O) in the cataractous lens is related to a decreased activity of Met(0)-peptide reductase, the level of this enzyme was determined in normal and cataractous lenses. It can be seen from Table 9 that there are no significant differences between the levels of Met(0)-peptide reductase in normal and cataractous lenses. In spite of these results, however, it is still possible that the Met(0)-peptide... [Pg.868]

Taking into account that heat treatment inactivates some oxidative enzymes and causes the rupture of some cellular structures, greater extractability of carotenoids is expected to occur in processed foods. Therefore, when mild temperatures are applied, it is very common to obtain higher carotenoid content in a processed food as compared to its fresh counter part. For example, total... [Pg.230]

It was recently reported that. >97% of BaP 4,5-epoxide metabolically formed from the metabolism of BaP in a reconstituted enzyme system containing purified cytochrome P-450c (P-448) is the 4S,5R enantiomer (24). The epoxide was determined by formation, separation and quantification of the diastereomeric trans-addition products of glutathione. Recently a BaP 4,5-epoxide was isolated from a metabolite mixture obtained from the metabolism of BaP by liver microsomes from 3-methylcholanthrene-treated Sprague-Dawley rats in the presence of the epoxide hydrolase inhibitor 3,3,3-trichloropropylene oxide, and was found to contain a 4S,5R/4R,5S enantiomer ratio of 94 6 (Chiu et. al., unpublished results). However, the content of the 4S,5R enantiomer was <60% when liver microsomes from untreated and phenobarbital-treated rats were used as the enzyme sources. Because BaP 4R,5S-epoxide is also hydrated predominantly to 4R,5R-dihydro-... [Pg.29]


See other pages where Enzyme, oxidative content is mentioned: [Pg.372]    [Pg.372]    [Pg.208]    [Pg.68]    [Pg.362]    [Pg.262]    [Pg.238]    [Pg.262]    [Pg.348]    [Pg.458]    [Pg.404]    [Pg.44]    [Pg.124]    [Pg.123]    [Pg.457]    [Pg.273]    [Pg.366]    [Pg.21]    [Pg.28]    [Pg.868]    [Pg.114]    [Pg.309]    [Pg.33]    [Pg.62]    [Pg.79]    [Pg.114]    [Pg.115]    [Pg.223]    [Pg.254]    [Pg.25]    [Pg.576]    [Pg.113]    [Pg.208]    [Pg.281]    [Pg.291]    [Pg.20]    [Pg.193]    [Pg.145]    [Pg.268]    [Pg.57]    [Pg.274]   
See also in sourсe #XX -- [ Pg.226 , Pg.227 ]




SEARCH



Enzyme content

Enzyme oxidation

Enzymes oxidizing

Oxidative enzymes

© 2024 chempedia.info