Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme-immobilised membrane reactor

Several L-amino acids are produced on a large scale by enzymatic resolution of N-acetyl-D,L-amino adds (Figure A8.4). Acylase immobilised on DEAE-Sephadex is for example employed in a continuous process while Degussa uses the free acylase retained in a membrane reactor. In the latter process the advantage of reuse of the enzyme and homogeneous catalysis are combined. [Pg.280]

Degussa AG uses immobilised acylase to produce a variety of L-amino adds, for example L-methionine (80,000 tonnes per annum). The prindples of the process are the same as those of the Tanabe-process, described above. Degussa uses a new type of reactor, an enzyme membrane reactor, on a pilot plant scale to produce L-methionine, L-phenylalanine and L-valine in an amount of 200 tonnes per annum. [Pg.282]

In this case study, an enzymatic hydrolysis reaction, the racemic ibuprofen ester, i.e. (R)-and (S)-ibuprofen esters in equimolar mixture, undergoes a kinetic resolution in a biphasic enzymatic membrane reactor (EMR). In kinetic resolution, the two enantiomers react at different rates lipase originated from Candida rugosa shows a greater stereopreference towards the (S)-enantiomer. The membrane module consisted of multiple bundles of polymeric hydrophilic hollow fibre. The membrane separated the two immiscible phases, i.e. organic in the shell side and aqueous in the lumen. Racemic substrate in the organic phase reacted with immobilised enzyme on the membrane where the hydrolysis reaction took place, and the product (S)-ibuprofen acid was extracted into the aqueous phase. [Pg.130]

The values of the Michaelis-Menten kinetic parameters, Vj3 and C,PP characterise the kinetic expression for the micro-environment within the porous structure. Kinetic analyses of the immobilised lipase in the membrane reactor were performed because the kinetic parameters cannot be assumed to be the same values as for die native enzymes. [Pg.130]

The inhibition analyses were examined differently for free lipase in a batch and immobilised lipase in membrane reactor system. Figure 5.14 shows the kinetics plot for substrate inhibition of the free lipase in the batch system, where [5] is the concentration of (S)-ibuprofen ester in isooctane, and v0 is the initial reaction rate for (S)-ester conversion. The data for immobilised lipase are shown in Figure 5.15 that is, the kinetics plot for substrate inhibition for immobilised lipase in the EMR system. The Hanes-Woolf plots in both systems show similar trends for substrate inhibition. The graphical presentation of rate curves for immobilised lipase shows higher values compared with free enzymes. The value for the... [Pg.131]

However, there are disadvantages to using immobilised cells. The cell may contain numerous catalytically active enzymes, which may catalyse unwanted side reactions. Also, the cell membrane itself may serve as a diffusion barrier, and may reduce productivity. The matrix may sharply reduce productivity if the microorganism is sensitive to product inhibition. One of the disadvantages of immobilised cell reactors is that the physiological state of the microorganism cannot be controlled. [Pg.202]

The reaction in a homogeneous solution with a polar organic solvent in which the enzymes and substrates are both soluble, occurs often at the expense of the enzyme stability [4, 5]. Besides immobilised enzymes in organic solvents [6], emulsion reactors, especially enzyme-membrane-reactors coupled with a product separation by membrane based extractive processes [7-9] and two-phase membrane reactors [10-12], are already established on a production scale. [Pg.187]

The work-up of batch processes, run in stirred vessels, had often faced the challenge to efficiently separate and recover the enzyme used. Meanwhile, there is abundant know-how available to immobilise enzymes on different carriers, though some issues need always to be considered maintained activity of the enzyme, its stability towards solvents and the operating temperature used in a reaction. Enzyme immobilisation allows for continuous reactions carried out in columns or in a sequence of continuous stirred-tank reactors. Certain advantages are offered by Degussa s enzyme-membrane-reactor (EMR), where the enzyme is surrounded by a hoUow-fibre membrane, that is permeable to substrate and product. [Pg.185]

Uragami T (2011), Enzyme-immobilised polymer membranes for chemical reactions. In Membranes for Membrane Reactors Preparation, Optimization and Selection, Ed. by Basile, Gallucc, John Wiley Sons, pp. 567-589. [Pg.884]

An important parameter in a number of fields is the study of inorganic phosphate. Recently, Kwan et al. [206,207] have reported on a screen-printed phosphate biosensor based on immobilised pyruvate oxidase (PyOD) for monitoring phosphate concentrations in a sequencing batch reactor system [206] and in human saliva [207]. The enzyme was immobilised by drop-coating a Nation solution onto the working electrode surface this was then covered by a poly(carbamoyl) sulfonate (PCS) hydrogel membrane. [Pg.539]

New reactor designs and immobilisation methods have been used to extend the lifetime of lipases in scCC>2 (Lozano et al., 2004). Ceramic membranes have been coated with hydrophilic polymers and the enzyme covalently attached to these. In SCCO2, activities and selectivities were excellent and the half-life of the catalyst was enhanced. It is thought the hydrophilic layer of the membrane protected the enzyme. Operational stability of enzymes has also been increased by using ionic liquid/scC02 biphasic systems (Lozano et al., 2002 Reetz et al., 2003). [Pg.71]


See other pages where Enzyme-immobilised membrane reactor is mentioned: [Pg.202]    [Pg.528]    [Pg.308]   
See also in sourсe #XX -- [ Pg.778 ]




SEARCH



Enzyme immobilisation

Enzyme membrane reactor

Immobilisation

Immobilisation Immobilised

Immobilised enzyme reactors

Immobilised enzymes

Membrane enzymes

© 2024 chempedia.info