Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme clarifying

Yield (%) 34 (for the recombinant enzyme) 12.3 (data for recombinant enzyme) clarified crude extract 18 36... [Pg.781]

Enzymes are classified in terms of the reactions which they catalyse and were formerly named by adding the suffix ase to the substrate or to the process of the reaction. In order to clarify the confusing nomenclature a system has been developed by the International Union of Biochemistry and the International Union of Pure and Applied Chemistry (see Enzyme Nomenclature , Elsevier, 1973). The enzymes are classified into divisions based on the type of reaction catalysed and the particular substrate. The suffix ase is retained and recommended trivial names and systematic names for classification are usually given when quoting a particular enzyme. Any one particular enzyme has a specific code number based upon the new classification. [Pg.159]

Use of ultrafiltration (UF) membranes is becoming increasingly popular for clarification of apple juice. AH particulate matter and cloud is removed, but enzymes pass through the membrane as part of the clarified juice. Thus pasteurization before UF treatment to inactivate enzymes prevents haze formation from enzymatic activity. Retention of flavor volatiles is lower than that using a rack-and-frame press, but higher than that using rotary vacuum precoat-filtration (21). [Pg.573]

HES is produced from 93—96% dextrose hydrolyzate that has been clarified, carbon-treated, ion-exchanged, and evaporated to 40—50% dry basis. Magnesium is added at a level of 0.5—5 mAf as a cofactor to maintain isomerase stabiUty and to prevent enzyme inhibition by trace amounts of residual calcium. The feed may also be deaerated or treated with sodium bisulfite at a level of 1—2-mAf SO2 to prevent oxidation of the enzyme and a resulting loss in activity. [Pg.294]

Primary structure analysis of phenylphosphate carboxylase of T. aromatica is performed in detail, to clarify the reaction mechanism involving four kinds of subunits. The a, (3, y, 8 subunits have molecular masses of 54, 53, 18, and lOkDa, respectively, which make up the active phenylphosphate carboxylase. The primary structures of a and (3 subunits show homology with 3-octaprenyl-4-hydroxybenzoate decarboxylase, 4-hydroxybenzoate decarboxylase, and vanil-late decarboxylase, whereas y subunit is unique and not characterized. The 18kDa 8 subunit belongs to a hydratase/phosphatase protein family. Taking 4-hydroxybenzoate decarboxylase into consideration, Schiihle and Fuchs postulate that the a(3y core enzyme catalyzes the reversible carboxylation. ... [Pg.103]

Aldoximes are prepared from aldehydes and hydroxylamine by condensation reaction, and the dehydration reaction of aldoxime is one of the most important methods of nitrile synthesis in organic chemistry." We speculated that it would become one of the most important examples in Green Chemistry if the dehydration reaction could be realized by an enzymatic method, and started studies on a new enzyme, aldoxime dehydratase, and its use in enzymatic nitrile synthesis. Furthermore, we clarified the relationship between aldoxime dehydratase and nitrile-degrading enzymes in the genome of the microorganisms and the physiological role of the enzyme. [Pg.133]

To clarify the characteristics of AMDase, the effects of some additives were examined using phenylmalonic acid as the representative substrate. The addihon of ATP and coenzyme A did not enhance the rate of the reaction, different from the case of malonyl-CoA decarboxylase and others in those, ATP and substrate acid form a mixed anhydride, which in turn reacts with coenzyme A to form a thiol ester of the substrate. In the present case, as both ATP and CoA-SH had no effect, the mechanism of the reaction will be totally different from the ordinary one described above. It is well estabhshed that avidin is a potent inhibitor of the formation of the biotin-enzyme complex. In the case of AMDase, addition of avidin has no influence on the enzyme activity, indicating that AMDase is not a biotin enzyme. [Pg.311]

For more detailed studies on this unique enzyme, the gene of AMDase was cloned using the direct expression method. The gene was clarified to be consisting of 720 bp, indicating that the enzyme consists of 240 amino acids (Fig. 9). [Pg.312]

In summary, therefore, the evidence seems convincing that exercise modifies circulating and tissue concentrations of antioxidants and enzyme activities. It is much less certain that the fatigue or damage to skeletal muscle associated with various forms of excessive or unaccustomed exercise is initiated by free radical-mediated degradation. Considerably more work is required in this area to clarify the underlying pathogenic mechanisms. [Pg.180]

Future research should also focus its attention on the factors/mechanisms that regulate free-radical activity in vivo. The complex interrelationship between cellular and extracellular levels of antioxidants needs to be clarified, and factors that govern the synthetic rate of the scavenging enzymes, for example, SOD or catalase will provide further insight into cellular redox control. [Pg.195]

Electrophoretic and kinetic studies of the patient s enzyme have been reported in several cases (F10). Most of them showed decreased substrate affinity and abnormal electrophoretic mobility. The main cause of P5N deficiency is considered to be an abnormality of P5N-I, probably arising from a structural gene mutation (H6). The precise molecular defect has not been clarified, because the normal gene for P5N-I has not been isolated. [Pg.30]

Progress in molecular biology has provided a new perspective. Techniques such as the polymerase chain reaction and single-strand conformation polymorphism analysis have greatly facilitated the molecular analysis of erythroenzymopathies. These studies have clarified the correlation between the functional and structural abnormalities of the variant enzymes. In general, the mutations that induce an alteration of substrate binding site and/or enzyme instability might result in markedly altered enzyme properties and severe clinical symptoms. [Pg.37]


See other pages where Enzyme clarifying is mentioned: [Pg.225]    [Pg.225]    [Pg.373]    [Pg.573]    [Pg.573]    [Pg.17]    [Pg.295]    [Pg.295]    [Pg.303]    [Pg.293]    [Pg.654]    [Pg.349]    [Pg.368]    [Pg.10]    [Pg.76]    [Pg.136]    [Pg.335]    [Pg.11]    [Pg.193]    [Pg.205]    [Pg.207]    [Pg.244]    [Pg.89]    [Pg.133]    [Pg.222]    [Pg.303]    [Pg.730]    [Pg.763]    [Pg.893]    [Pg.194]    [Pg.522]    [Pg.117]    [Pg.75]    [Pg.169]    [Pg.328]    [Pg.273]    [Pg.353]    [Pg.230]    [Pg.50]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Clarified enzyme product

Clarifier

Clarifiers

© 2024 chempedia.info