Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme catalysis kinetics

Kuby, S. (1991) Enzyme Catalysis, Kinetics and Substrate Binding. CRC Press, Boca Raton, FL. [Pg.145]

Andrews, P. R. Smith, G. D. Yonng, I. G. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate, Biochemistry 1973,12, 3492-3498. [Pg.594]

Enzyme kinetics is the quantitative study of enzyme catalysis. Kinetic studies measure reaction rates and the affinity of enzymes for substrates and inhibitors. Kinetics also provides insight into reaction mechanisms. [Pg.170]

After optimizing the assay conditions, including ionic strength, pH, temperature, activator (Ca ) concentration, and polymer concentration, a calibration curve was developed, which allows the lipid substrate concentration to be determined from the fluorescence intensity. The calibration curve allows the enzyme catalysis kinetics parameters (e.g.. Km and Vmax) to be measured. This PLC turn-off assay is effectively inhibited by known inhibitors (F and EDTA), which demonstrates that the sensor relies on the specific catalysis reaction by PLC. It has been demonstrated to be a sensitive (detection limit 0.5nM enzyme concentration), fast (<5 min), and selective (good specificity over phospholipase A and D, and other nonspecific proteins) PLC assay, which can be carried out at very low initial substrate concentration (in the range of micromolar to nanomolar). [Pg.48]

Kuby S A (1991) A study of enzymes, vol I, Enzyme catalysis, kinetics, and substrate binding. CRC Press, Boca Raton... [Pg.679]

Enthalpy of activation, 10, 156-160 Entropy of activation, 10, 156-160 compared with AV, 169 concentration units and, 168 precision of, 168 Enzyme catalysis, 90-94 Equilibria, complexation, 145-148 Exchange reactions, kinetics of,... [Pg.278]

Despite the still growing number of available methods for the preparation of enantiopure compounds by the use ofasymmetric catalysis, kinetic resolution (KR) is still the most employed method in the industry [4], and in most cases biocatalysts (enzymes) are used. [Pg.89]

Temperature Control. While it was well known that enzyme catalysis is a direct function of temperature, little attention was paid to its control in kinetic enzyme assays until the pioneer work of Schneider and Willis (11). These workers showed that the temperature compartment of the Beckman DU spectrophotometer varied widely as a function of room temperature and of the number of times the cuvet compartment was opened. Thus, while most authors have assumed that they were conducting their assay at room temperature (i.e., a nominal 25 ) direct measurements showed that the cuvette temperature was closer to 32 C. Schneider and Willis suggested that thermospacers, hollow plates adjacent to each side of the cuvette compartment through which water at a constant temperature is circulated, be used in order to standardize clinical enzyme assay temperatures. [Pg.179]

From these data it seems feasible that a Co(II)-species is generated during catalysis, and that homolysis of the Co—C-bond is a prerequisite for enzyme catalysis in ribonucleotide reductase. However, the kinetics of appearance of the Co(II)-signal indicates that the rate of formation of Co(II) is much slower than either the rate of ribonucleotide reduction... [Pg.71]

Volume 308. Enzyme Kinetics and Mechanism (Part E Energetics of Enzyme Catalysis)... [Pg.30]

First-order rate constants are used to describe reactions of the type A — B. In the simple mechanism for enzyme catalysis, the reactions leading away from ES in both directions are of this type. The velocity of ES disappearance by any single pathway (such as the ones labeled k2 and k3) depends on the fraction of ES molecules that have sufficient energy to get across the specific activation barrier (hump) and decompose along a specific route. ES gets this energy from collision with solvent and from thermal motions in ES itself. The velocity of a first-order reaction depends linearly on the amount of ES left at any time. Since velocity has units of molar per minute (M/min) and ES has units of molar (M), the little k (first-order rate constant) must have units of reciprocal minutes (1/min, or min ). Since only one molecule of ES is involved in the reaction, this case is called first-order kinetics. The velocity depends on the substrate concentration raised to the first power (v = /c[A]). [Pg.116]

Baldwin s rules. It is noteworthy that the EM5/EM6 ratio is reduced to a factor as small as about 2, which is less than the intrinsic entropic advantage of 5- over 6-membered ring formation. Kirby (1980) in his review lists a large number of EM data for intramolecular nucleophilic additions to carbonyl. Probably because these data derive from laboratories of chemists mainly interested in intramolecular nucleophilic catalysis and its relevance to understanding enzymic catalysis, the great majority of them refer to reactions occurring via 5- and 6-membered transition states. The only example where a 4-membered transition state is involved is (70), whose kinetics were studied... [Pg.97]

In this case, most of the catalyst is in the form of M A and the reaction is zero order with respect to A. Thus, the kinetics move from first order at low cA toward zero order as cA increases. This feature of the rate saturating or reaching a plateau is common to many catalytic reactions, including surface catalysis (Section 8.4) and enzyme catalysis (Chapter 10). [Pg.187]

Most catalytic cycles are characterized by the fact that, prior to the rate-determining step [18], intermediates are coupled by equilibria in the catalytic cycle. For that reason Michaelis-Menten kinetics, which originally were published in the field of enzyme catalysis at the start of the last century, are of fundamental importance for homogeneous catalysis. As shown in the reaction sequence of Scheme 10.1, the active catalyst first reacts with the substrate in a pre-equilibrium to give the catalyst-substrate complex [20]. In the rate-determining step, this complex finally reacts to form the product, releasing the catalyst... [Pg.259]

Abstract This chapter introduces the basic principles used in applying isotope effects to studies of the kinetics and mechanisms of enzyme catalyzed reactions. Following the introduction of algebraic equations typically used for kinetic analysis of enzyme reactions and a brief discussion of aqueous solvent isotope effects (because enzyme reactions universally occur in aqueous solutions), practical examples illustrating methods and techniques for studying enzyme isotope effects are presented. Finally, computer modeling of enzyme catalysis is briefly discussed. [Pg.343]

Kurz and Frieden in 1977 and 1980 determined -secondary kinetic isotope effects for the unusual desulfonation reaction shown in Table 1, both in free solution and with enzyme catalysis by glutamate dehydrogenase. The isotope effects (H/D) were in the range of 1.14-1.20. At the time, the correct equilibrium isotope effect had not been reported and their measurements yielded an erroneous value... [Pg.36]

Thus, room-temperature ionic liquids have the potential to provide environmentally friendly solvents for the chemical and pharmaceutical industries. The ionic liquid environment is very different from normal polar and nonpolar organic solvents both the thermodynamics and the kinetics of chemical reactions are different, and so the outcome of a reaction may also be different. Organic reactions that have been successfully studied in ionic liquids include Friedel-Crafts, Diels-Alder,Heck catalysis, chlorination, enzyme catalysis,polymeriz-... [Pg.113]

As shown in Table 12,H202 and fBuOOH have been used frequently as oxygen donors in peroxidase-catalyzed sulfoxidations. Other achiral oxidants, e.g. iodo-sobenzene and peracids, are not accepted by enzymes and, therefore, only racemic sulfoxides were found (c.f. entries 34-36). Interestingly, racemic hydroperoxides oxidize sulfides to sulfoxides enantioselectively under CPO catalysis [68]. In this reaction, not only the sulfoxides but also the hydroperoxide and the corresponding alcohol were produced in optically active form by enzyme-catalyzed kinetic resolution (cf. Eq. 3 and Table 3 in Sect. 3.1). [Pg.103]

The methods for measuring the value of these constants are described in Appendix 3.4. They are important to biochemists and enzymologists interested in kinetics and mechanisms of enzyme catalysis. It is not, however, always appreciated that they are also important in physiology and in the medical sciences. [Pg.51]

Reactions in a pathway can be divided into two classes those that are very close to equilibrium (near-equilibrium) and those that are far removed from equilibrium (non-equilibrium). This is discussed in Chapter 2 but is summarised here using kinetic principles to explain how enzyme catalysis can give rise to two separate types of reaction in one pathway. [Pg.61]

As the first committed step in the biosynthesis of AMP from IMP, AMPSase plays a central role in de novo purine nucleotide biosynthesis. A 6-phosphoryl-IMP intermediate appears to be formed during catalysis, and kinetic studies of E. coli AMPSase demonstrated that the substrates bind to the enzyme active sites randomly. With mammalian AMPSase, aspartate exhibits preferred binding to the E GTPTMP complex rather than to the free enzyme. Other kinetic data support the inference that Mg-aspartate complex formation occurs within the adenylosuccinate synthetase active site and that such a... [Pg.36]

EFFECT OF ADDITIONAL CENTRAL COMPLEX SPECIES ON THE GENERAL FORM OF THE STEADY STATE RATE EOUATION. Up to now, we have actually considered a chemically unrealistic model for enzyme catalysis in that we have assumed that a single enzyme-bound species, namely EX, accounts for the catalytic process. We now treat a more reasonable representation of the kinetic mechanism... [Pg.250]


See other pages where Enzyme catalysis kinetics is mentioned: [Pg.85]    [Pg.85]    [Pg.211]    [Pg.205]    [Pg.2]    [Pg.28]    [Pg.170]    [Pg.263]    [Pg.288]    [Pg.182]    [Pg.24]    [Pg.256]    [Pg.307]    [Pg.195]    [Pg.38]    [Pg.50]    [Pg.315]    [Pg.384]   
See also in sourсe #XX -- [ Pg.117 , Pg.118 ]

See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Catalysis enzymic

Catalysis kinetics

Enzyme kinetic

Enzyme kinetics

Enzymes catalysis

© 2024 chempedia.info