Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Entropy transfer parameter

Rate constants for the reaction of aquanitrocobaloxime with thiourea have been determined as a function of pH, solvent composition, pressure, and temperature in dioxane-water mixtures.With the aid of solubility measurements a complete quantitative analysis of solvent effects on the initial state and transition state transfer parameters could be made. It was found the activation enthalpy and entropy vary strongly with solvent composition. This is in marked contrast to the variations found for vitamin 612- The rate constants increase strongly after 50 vol% dioxane in the dioxane-water mixtures, which is not observed with B,2. The volumes of activation are small and positive in accordance with a dissociative mode of activation. [Pg.193]

In a detailed study, Abraham et al. have shown that the method of multiple linear regression can be successfully applied to the transfer Gibbs energies of the IS and AC. Finally, it should be noted here that the method can also be employed for enthalpies and entropies of transfer of IS and AC, but this needs careful temperature-dependent measurements of rate constants as well as transfer parameters and there are few examples of such demanding studies in the literature. [Pg.52]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
The detritiation of [3H]-2,4,6-trimethoxybenzene by aqueous perchloric acid was also studied, the second-order rate coefficients (107/c2) being determined as 5.44, 62.0, and 190 at 0, 24.6, and 36.8 °C, respectively, whilst with phosphate buffers, values were 3.75, 13.8, and 42.1 at 24.6, 39.9, and 55.4 °C, respectively. The summarised kinetic parameters for these studies are given in Table 134, and notable among the values are the more negative entropies of activation obtained in catalysis by the more negative acids. This has been rationalised in terms of proton transfer... [Pg.213]

It should be born in mind, however, that the activation parameters calculated refer to the sum of several reactions, whose enthalpy and/or entropy changes may have different signs from those of the decrystalUzation proper. Specifically, the contribution to the activation parameters of the interactions that occur in the solvent system should be taken into account. Consider the energetics of association of the solvated ions with the AGU. We may employ the extra-thermodynamic quantities of transfer of single ions from aprotic to protic solvents as a model for the reaction under consideration. This use is appropriate because recent measurements (using solvatochromic indicators) have indicated that the polarity at the surface of cellulose is akin to that of aliphatic alcohols [99]. Single-ion enthalpies of transfer indicate that Li+ is more efficiently solvated by DMAc than by alcohols, hence by cellulose. That is, the equilibrium shown in Eq. 7 is endothermic ... [Pg.123]

The use of direct electrochemical methods (cyclic voltammetry Pig. 17) has enabled us to measure the thermodynamic parameters of isolated water-soluble fragments of the Rieske proteins of various bci complexes (Table XII)). (55, 92). The values determined for the standard reaction entropy, AS°, for both the mitochondrial and the bacterial Rieske fragments are similar to values obtained for water-soluble cytochromes they are more negative than values measured for other electron transfer proteins (93). Large negative values of AS° have been correlated with a less exposed metal site (93). However, this is opposite to what is observed in Rieske proteins, since the cluster appears to be less exposed in Rieske-type ferredoxins that show less negative values of AS° (see Section V,B). [Pg.138]

Ashby and Yu have studied the kinetics of reduction of benzophenone with TIBA in ether and showed that the overall kinetic rate expression is second order, first order in TIBA and first order in ketone (151). The observed activation parameters were AG - 18.8 kcal/mol AH = 15.8 kcal/mol and AS = - 10.1 e.u. The negative entropy of activation is consistent with a cyclic transition state for the rate-determining hydride-transfer step. A Hammett study gave a value of p = 0.362, supporting nucleophilic attack by the aluminum alkyl on the carbonyl group in the rate-determining step. [Pg.291]

This factorization of the rate of the elementary process (Eq. 1) leads (with a few approximations) to the compartmentalization of the experimental parameters in the following way the dependence of the rate upon reaction exo-thermicity and upon environmental polarity controls and is reflected in the activation energy and the temperature dependence, whereas the dependence of the rate upon distance, orientation, and electronic interactions between the donor and the acceptor controls and is reflected in Kel- We refer to this eleetronie interaction energy as A rather than the common matrix element symbol H f, since we require that A include contributions from high-order perturbations and in particular superexchange processes. Experimentally, the y-intereept of the Arrhenius plot of the eleetron transfer rate yields the prefactor [KelAcxp)- - AS /kg)], and hence the true activation entropy must be known in order to extract Kel- An interesting example of the extraction of the temperature independent prefaetor has been presented in Isied s polyproline work [35]. [Pg.54]

One of the approaches to calculating the solubility of compounds was developed by Hildebrand. In his approach, a regular solution involves no entropy change when a small amount of one of its components is transferred to it from an ideal solution of the same composition when the total volume remains the same. In other words, a regular solution can have a non-ideal enthalpy of formation but must have an ideal entropy of formation. In this theory, a quantity called the Hildebrand parameter is defined as ... [Pg.77]

For the establishment of the realistic limit, one has to take account of the rates of processes in which mass, heat, momentum, and chemical energy are transferred. In this so-called finite-time, finite-size thermodynamics, it is usually possible to establish optimal conditions for operating the process, namely, with a minimum, but nonzero, entropy generation and loss of work. Such optima seem to be characterized by a universal principle equiparti-tioning of the process s driving forces in time and space. The optima may eventually be shifted by including economic and environmental parameters such as fixed and variable costs and emissions. For this aspect, we refer to Chapter 13. [Pg.58]

To finalize the development of the aqueous CO2 force field parameters, the C02 model was used in free energy perturbation Monte Carlo (FEP/MC) simulations to determine the solubility of C02 in water. The solubility of C02 in water is calculated as a function of temperature in the development process to maintain transferability of the C02 model to different simulation techniques and to quantify the robustness of the technique used in the solubility calculations. It is also noted that the calculated solubility is based upon the change in the Gibbs energy of the system and that parameter development must account for the entropy/enthalpy balance that contributes to the overall structure of the solute and solvent over the temperature range being modeled [17]. [Pg.348]

To elucidate the mechanism of silver-catalyzed silylene transfer, kinetic studies were performed by Woerpel and coworkers (Scheme 7.17).83 The reaction of cyclohexene silacyclopropane 58 and styrene in the presence of 5mol% of (Ph3P)2AgOTf was followed using 1H NMR spectroscopy. The kinetic order in cyclohexene silacyclopropane 58 was determined to be 1. In contrast to the rate acceleration observed with increasing the concentration of 58, inhibition of the rate of the reaction was observed when styrene, cyclohexene, or triphenylphosphine concentrations were increased. Saturation kinetic behavior in catalyst concentration was observed. Activation parameters were determined to be A// = 30(1) kcal/mol and A A 31(7) eu (entropy units). Similar activation parameters were observed in... [Pg.197]

System with random fluxes is defined as the nonequilibrium system where the fluxes of substance, heat, etc. change randomly. One can cite numerous examples of such systems turbulent gas-liquid systems with intensive heat/mass transfer, turbulent fluids containing dispersed solids, etc. In the case of pore formation, such situation is realized when the heat fluxes change randomly because of air fluidization or mechanical mixing. All macroscopic measured parameters of stationary turbulent flows, like their pressure, temperature, excess (free) energy, entropy, etc. do not change with time, while their values and directions in different spots of the flows can vary significantly. [Pg.45]


See other pages where Entropy transfer parameter is mentioned: [Pg.1181]    [Pg.1226]    [Pg.1226]    [Pg.1181]    [Pg.1226]    [Pg.1226]    [Pg.625]    [Pg.63]    [Pg.174]    [Pg.362]    [Pg.326]    [Pg.255]    [Pg.221]    [Pg.50]    [Pg.353]    [Pg.192]    [Pg.214]    [Pg.299]    [Pg.139]    [Pg.487]    [Pg.22]    [Pg.35]    [Pg.909]    [Pg.51]    [Pg.351]    [Pg.37]    [Pg.909]    [Pg.44]    [Pg.145]    [Pg.266]    [Pg.178]    [Pg.316]    [Pg.344]    [Pg.165]    [Pg.86]    [Pg.242]    [Pg.1016]    [Pg.327]    [Pg.9]    [Pg.169]   
See also in sourсe #XX -- [ Pg.16 , Pg.24 ]




SEARCH



Entropy parameters

Parameters, transferability

© 2024 chempedia.info