Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ensemble mechanics

Fig. 6. 3C complexes as intermediates of isomerization. A two-site (large ensemble) mechanism via a bond shift (left) or cyclopropane ring (right), as suggested by various authors (see text). Except for the number of C atoms involved, all other aspects of the mechanisms are speculative. The same remark holds for Figs. 7-9. [Pg.173]

It is customary in statistical mechanics to obtain the average properties of members of an ensemble, an essentially infinite set of systems subject to the same constraints. Of course each of the systems contains the... [Pg.374]

The grand canonical ensemble is a set of systems each with the same volume V, the same temperature T and the same chemical potential p (or if there is more than one substance present, the same set of p. s). This corresponds to a set of systems separated by diathennic and penneable walls and allowed to equilibrate. In classical thennodynamics, the appropriate fimction for fixed p, V, and Tis the productpV(see equation (A2.1.3 7)1 and statistical mechanics relates pV directly to the grand canonical partition function... [Pg.375]

Geometrically, Liouville s theorem means that if one follows the motion of a small phase volume in Y space, it may change its shape but its volume is invariant. In other words the motion of this volume in T space is like that of an incompressible fluid. Liouville s theorem, being a restatement of mechanics, is an important ingredient in the fomuilation of the theory of statistical ensembles, which is considered next. [Pg.383]

Let us consider the consequence of mechanics for the ensemble density. As in subsection A2.2.2.1. let D/Dt represent differentiation along the trajectory in F space. By definition,... [Pg.384]

A stationary ensemble density distribution is constrained to be a functional of the constants of motion (globally conserved quantities). In particular, a simple choice is pip, q) = p (W (p, q)), where p (W) is some fiinctional (fiinction of a fiinction) of W. Any such fiinctional has a vanishing Poisson bracket (or a connnutator) with Wand is thus a stationary distribution. Its dependence on (p, q) through Hip, q) = E is expected to be reasonably smooth. Quanttun mechanically, p (W) is die density operator which has some fiinctional dependence on the Hamiltonian Wdepending on the ensemble. It is also nonnalized Trp = 1. The density matrix is the matrix representation of the density operator in some chosen representation of a complete orthononnal set of states. If the complete orthononnal set of eigenstates of die Hamiltonian is known ... [Pg.385]

Consider two systems in thennal contact as discussed above. Let the system II (with volume and particles N ) correspond to a reservoir R which is much larger than the system I (with volume F and particles N) of interest. In order to find the canonical ensemble distribution one needs to obtain the probability that the system I is in a specific microstate v which has an energy E, . When the system is in this microstate, the reservoir will have the energy E = Ej.- E due to the constraint that the total energy of the isolated composite system H-II is fixed and denoted by Ej, but the reservoir can be in any one of the R( r possible states that the mechanics within the reservoir dictates. Given that the microstate of the system of... [Pg.395]

The above derivation leads to the identification of the canonical ensemble density distribution. More generally, consider a system with volume V andA particles of type A, particles of type B, etc., such that N = Nj + Ag +. . ., and let the system be in themial equilibrium with a much larger heat reservoir at temperature T. Then if fis tlie system Hamiltonian, the canonical distribution is (quantum mechanically)... [Pg.397]

The T-P ensemble distribution is obtained in a maimer similar to the grand canonical distribution as (quantum mechanically)... [Pg.417]

In this chapter, the foundations of equilibrium statistical mechanics are introduced and applied to ideal and weakly interacting systems. The coimection between statistical mechanics and thennodynamics is made by introducing ensemble methods. The role of mechanics, both quantum and classical, is described. In particular, the concept and use of the density of states is utilized. Applications are made to ideal quantum and classical gases, ideal gas of diatomic molecules, photons and the black body radiation, phonons in a hannonic solid, conduction electrons in metals and the Bose—Einstein condensation. Introductory aspects of the density... [Pg.435]

No system is exactly unifomi even a crystal lattice will have fluctuations in density, and even the Ising model must pemiit fluctuations in the configuration of spins around a given spin. Moreover, even the classical treatment allows for fluctuations the statistical mechanics of the grand canonical ensemble yields an exact relation between the isothemial compressibility K j,and the number of molecules Ain volume V ... [Pg.647]

Statistical mechanics and kinetic theory, as we have seen, are typically concerned with the average behaviour of an ensemble of similarly prepared systems. One usually hopes, and occasionally can demonstrate, that the variations of these properties from one system to another in the ensemble, or that the variation with time of the properties of any... [Pg.687]

The bulk of the infomiation about anhannonicity has come from classical mechanical calculations. As described above, the aidiannonic RRKM rate constant for an analytic potential energy fiinction may be detemiined from either equation (A3.12.4) [13] or equation (A3.12.24) [46] by sampling a microcanonical ensemble. This rate constant and the one calculated from the hamionic frequencies for the analytic potential give the aidiannonic correctiony j ( , J) in equation (A3.12.41). The transition state s aidiannonic classical sum of states is found from the phase space integral... [Pg.1021]

A diagrannnatic approach that can unify the theory underlymg these many spectroscopies is presented. The most complete theoretical treatment is achieved by applying statistical quantum mechanics in the fonn of the time evolution of the light/matter density operator. (It is recoimnended that anyone interested in advanced study of this topic should familiarize themselves with density operator fonnalism [8, 9, 10, H and f2]. Most books on nonlinear optics [13,14, f5,16 and 17] and nonlinear optical spectroscopy [18,19] treat this in much detail.) Once the density operator is known at any time and position within a material, its matrix in the eigenstate basis set of the constituents (usually molecules) can be detennined. The ensemble averaged electrical polarization, P, is then obtained—tlie centrepiece of all spectroscopies based on the electric component of the EM field. [Pg.1180]

Statistical mechanics may be used to derive practical microscopic fomuilae for themiodynamic quantities. A well-known example is tire virial expression for the pressure, easily derived by scaling the atomic coordinates in the canonical ensemble partition fiinction... [Pg.2248]

Chesnut D A and Salsburg Z W 1963 Monte Carlo procedure for statistical mechanical calculation in a grand canonical ensemble of lattice systems J. Chem. Phys. 38 2861-75... [Pg.2280]

For these sequences the value of Gj, is less than a certain small value g. For such sequences the folding occurs directly from the ensemble of unfolded states to the NBA. The free energy surface is dominated by the NBA (or a funnel) and the volume associated with NBA is very large. The partition factor <6 is near unify so that these sequences reach the native state by two-state kinetics. The amplitudes in (C2.5.7) are nearly zero. There are no intennediates in the pathways from the denatured state to the native state. Fast folders reach the native state by a nucleation-collapse mechanism which means that once a certain number of contacts (folding nuclei) are fonned then the native state is reached very rapidly [25, 26]. The time scale for reaching the native state for fast folders (which are nonnally associated with those sequences for which topological fmstration is minimal) is found to be... [Pg.2657]

In what is called BO MD, the nuclear wavepacket is simulated by a swarm of trajectories. We emphasize here that this does not necessarily mean that the nuclei are being treated classically. The difference is in the chosen initial conditions. A fully classical treatment takes the initial positions and momenta from a classical ensemble. The use of quantum mechanical distributions instead leads to a seraiclassical simulation. The important topic of choosing initial conditions is the subject of Section II.C. [Pg.258]

Is the temperature 1/0 related to the variance of the momentum distribution as in the classical equipartition theorem It happens that there is no simple generalization of the equipartition theorem of classical statistical mechanics. For the 2N dimensional phase space F = (xi. .. XN,pi,.. -Pn) the ensemble average for a harmonic system is... [Pg.199]

A particularly convenient notation for trajectory bundle system can be introduced by using the classical Liouville equation which describes an ensemble of Hamiltonian trajectories by a phase space density / = f q, q, t). In textbooks of classical mechanics, e.g. [12], it is shown that Liouville s equation... [Pg.385]

Z-matriccs arc commonly used as input to quantum mechanical ab initio and serai-empirical) calculations as they properly describe the spatial arrangement of the atoms of a molecule. Note that there is no explicit information on the connectivity present in the Z-matrix, as there is, c.g., in a connection table, but quantum mechanics derives the bonding and non-bonding intramolecular interactions from the molecular electronic wavefunction, starting from atomic wavefiinctions and a crude 3D structure. In contrast to that, most of the molecular mechanics packages require the initial molecular geometry as 3D Cartesian coordinates plus the connection table, as they have to assign appropriate force constants and potentials to each atom and each bond in order to relax and optimi-/e the molecular structure. Furthermore, Cartesian coordinates are preferable to internal coordinates if the spatial situations of ensembles of different molecules have to be compared. Of course, both representations are interconvertible. [Pg.94]

The canonical ensemble is the name given to an ensemble for constant temperature, number of particles and volume. For our purposes Jf can be considered the same as the total energy, (p r ), which equals the sum of the kinetic energy (jT(p )) of the system, which depends upon the momenta of the particles, and the potential energy (T (r )), which depends upon tlie positions. The factor N arises from the indistinguishability of the particles and the factor is required to ensure that the partition function is equal to the quantum mechanical result for a particle in a box. A short discussion of some of the key results of statistical mechanics is provided in Appendix 6.1 and further details can be found in standard textbooks. [Pg.319]

An ensemble of trajectory calculations is rigorously the most correct description of how a reaction proceeds. However, the MEP is a much more understandable and useful description of the reaction mechanism. These calculations are expected to continue to be an important description of reaction mechanism in spite of the technical difficulties involved. [Pg.162]

Due to the noncrystalline, nonequilibrium nature of polymers, a statistical mechanical description is rigorously most correct. Thus, simply hnding a minimum-energy conformation and computing properties is not generally suf-hcient. It is usually necessary to compute ensemble averages, even of molecular properties. The additional work needed on the part of both the researcher to set up the simulation and the computer to run the simulation must be considered. When possible, it is advisable to use group additivity or analytic estimation methods. [Pg.309]


See other pages where Ensemble mechanics is mentioned: [Pg.175]    [Pg.175]    [Pg.375]    [Pg.376]    [Pg.376]    [Pg.386]    [Pg.386]    [Pg.387]    [Pg.666]    [Pg.1027]    [Pg.1027]    [Pg.1502]    [Pg.1610]    [Pg.2249]    [Pg.2256]    [Pg.2268]    [Pg.266]    [Pg.197]    [Pg.230]    [Pg.338]    [Pg.367]    [Pg.318]    [Pg.318]    [Pg.322]    [Pg.179]    [Pg.207]   


SEARCH



Canonical-ensemble statistical mechanics

Classical statistical mechanics canonical ensemble

Ensemble Properties and Basic Statistical Mechanics

Ensemble quantum-mechanical

Ensembles classical statistical mechanics

Equilibrium Statistical Mechanics Using Ensembles

Equilibrium Statistical Mechanics. III. Ensembles

Equilibrium statistical mechanics canonical ensemble

Equilibrium statistical mechanics ensembles

Microcanonical-ensemble statistical mechanics

Statistical mechanics ensembles

Statistical mechanics grand-canonical ensemble

© 2024 chempedia.info