Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enones metallation

Metal-ammonia solutions reduce conjugated enones to saturated ketones and reductively cleave a-acetoxy ketones i.e. ketol acetates) to the unsubstituted ketones. In both cases the actual reduction product is the enolate salt of a saturated ketone this salt resists further reduction. If an alcohol is present in the reaction mixture, the enolate salt protonates and the resulting ketone is reduced further to a saturated alcohol. Linearly or cross-conjugated dienones are reduced to enones in the absence of a proton donor other than ammonia. The Birch reduction of unsaturated ketones to saturated alcohols was first reported by Wilds and Nelson using lithium as the reducing agent. This metal has been used almost exclusively by subsequent workers for the reduction of both unsaturated and saturated ketones. Calcium has been preferred for the reductive cleavage of ketol acetates. [Pg.27]

As first demonstrated by Stork,the metal enolate formed by metal-ammoni reduction of a conjugated enone or a ketol acetate can be alkylated in liquic ammonia. The reductive alkylation reaction is synthetically useful since ii permits alkylation of a ketone at the a-position other than the one at whicf thermodynamically controlled enolate salt formation occurs. Direct methyl-ation of 5a-androstan-17-ol-3-one occurs at C-2 whereas reductive methyl-... [Pg.46]

J. E. StaiT, Metal Ammonia Reductions of Steroidal Enones, Saturated Ketones, and Ketols in Steroid Reactions, C. Djerassi, ed., Holden-Day, Inc., San Francisco, 1963, Chapter 7. [Pg.220]

A retrosynthetic analysis of fragment 152 can be completed through cleavage of the C16-C17 bond in enone 155, the projected precursor of epoxide 152. This retrosynthetic maneuver furnishes intermediates 156 and 157 as potential building blocks. In the forward sense, acylation of a vinyl metal species derived from 156 with Weinreb amide 157 could accomplish the construction of enone 155. Iodide 153, on the other hand, can be traced retrosynthetically to the commercially available, optically active building block methyl (S)-(+)-3-hydroxy-2-methyIpropionate (154). [Pg.603]

In the Michael addition of achiral enolates and achiral Michael acceptors the basic general problem of simple diastereoselection (see Section D.1.5.1.3.2.), as described in Section 1.5.2.3.2. is applicable. Thus, the intermolecular 1,4-addition of achiral metal enolates to enones, a.jS-unsat-urated esters, and thioamides, results in the formation of racemic syn-1,2 and/or anti-3,4 adducts. [Pg.954]

On the other hand, the enantioselective 1,4-addition of carbanions such as enolates to linear enones is an interesting challenge, since relatively few efficient methods exist for these transformations. The Michael reaction of p-dicarbonyl compounds with a,p-unsaturated ketones can be catalysed by a number of transition-metal compounds. The asymmetric version of this reaction has been performed using chiral diol, diamine, and diphosphine ligands. In the past few years, bidentate and polydentate thioethers have begun to be considered as chiral ligands for this reaction. As an example, Christoffers et al. have developed the synthesis of several S/O-bidentate and S/O/S-tridentate thioether... [Pg.97]

Reduction of Ketones and Enones. Although the method has been supplanted for synthetic purposes by hydride donors, the reduction of ketones to alcohols in ammonia or alcohols provides mechanistic insight into dissolving-metal reductions. The outcome of the reaction of ketones with metal reductants is determined by the fate of the initial ketyl radical formed by a single-electron transfer. The radical intermediate, depending on its structure and the reaction medium, may be protonated, disproportionate, or dimerize.209 In hydroxylic solvents such as liquid ammonia or in the presence of an alcohol, the protonation process dominates over dimerization. Net reduction can also occur by a disproportionation process. As is discussed in Section 5.6.3, dimerization can become the dominant process under conditions in which protonation does not occur rapidly. [Pg.435]

The mechanism of [3 + 2] reductive cycloadditions clearly is more complex than other aldehyde/alkyne couplings since additional bonds are formed in the process. The catalytic reductive [3 + 2] cycloaddition process likely proceeds via the intermediacy of metallacycle 29, followed by enolate protonation to afford vinyl nickel species 30, alkenyl addition to the aldehyde to afford nickel alkoxide 31, and reduction of the Ni(II) alkoxide 31 back to the catalytically active Ni(0) species by Et3B (Scheme 23). In an intramolecular case, metallacycle 29 was isolated, fully characterized, and illustrated to undergo [3 + 2] reductive cycloaddition upon exposure to methanol [45]. Related pathways have recently been described involving cobalt-catalyzed reductive cyclo additions of enones and allenes [46], suggesting that this novel mechanism may be general for a variety of metals and substrate combinations. [Pg.27]

Interestingly, when the chloro analog was transmetallated and treated with 3-ethoxy cyclohexen-l-one, the expected enone (XI) was not observed, but an enone with a mass of 34 units greater than (XI) was noticed. It also indicated the enone carried the chloro analog. It was presumed that the hetero atoms in the heterocycle present in the starting material (VIII) had performed a directed metallated lithiation providing a different enone bearing the chloro moiety. [Pg.225]

Domino Michael/aldol processes, which are initiated by the addition of a halide to an enone or enal, have found wide attention. They are valuable building blocks, as they can be easily converted into a variety of extended aldols via subsequent SN2 reactions with nucleophiles or a halide/metal exchange. As an example, a-haloalkyl- 3-hy-droxy ketones such as 2-76 have been obtained in very good yields and selectivities by reaction of enones 2-71 with nBu4NX in the presence of an aldehyde 2-74 and TiCl4as described by the group of Shinokubo and Oshima (Scheme 2.16) [24]. [Pg.58]

The stereoselectivity obtained in hydrogenation of an enone can be due to the formation of an intermediate in which alkene, hydrogen, and alcohol groups bind simultaneously to the metal (Equation (5)). This kind of stereoselectivity is typical in catalytic reactions where a polar group resides near to a C=C bond. [Pg.82]

The presence of Cu(i) or Cu(n) salts in the aforementioned reactions is critical. It is believed that organozinc reagents undergo transmetallation with copper species to yield more reactive complexes.301 A proposed301 catalytic cycle (Scheme 118) suggests that the alkyl group transferred to the enone from the copper metal in a bimetallic intermediate 207. [Pg.390]

Reactions of highly electron-rich organometalate salts (organocuprates, orga-noborates, Grignard reagents, etc.) and metal hydrides (trialkyltin hydride, triethylsilane, borohydrides, etc.) with cyano-substituted olefins, enones, ketones, carbocations, pyridinium cations, etc. are conventionally formulated as nucleophilic addition reactions. We illustrate the utility of donor/acceptor association and electron-transfer below. [Pg.245]


See other pages where Enones metallation is mentioned: [Pg.6]    [Pg.6]    [Pg.363]    [Pg.29]    [Pg.30]    [Pg.30]    [Pg.31]    [Pg.38]    [Pg.39]    [Pg.42]    [Pg.43]    [Pg.214]    [Pg.102]    [Pg.114]    [Pg.227]    [Pg.572]    [Pg.607]    [Pg.958]    [Pg.53]    [Pg.840]    [Pg.119]    [Pg.840]    [Pg.74]    [Pg.79]    [Pg.100]    [Pg.535]    [Pg.695]    [Pg.613]    [Pg.13]    [Pg.125]    [Pg.140]    [Pg.477]    [Pg.114]    [Pg.258]    [Pg.312]    [Pg.253]    [Pg.983]   
See also in sourсe #XX -- [ Pg.283 , Pg.286 ]




SEARCH



Alkyl metals, a-selenocarbonyl compound homologation reactions with enones

Dissolving metals enones

Enones chiral metal complexes

Enones reactions with a-selenoalkyl metals

Metal hydrides enones

© 2024 chempedia.info