Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol and enolate reactions

Enol and enolate reactions at oxygen preparation of enol ethers... [Pg.541]

ENOL AND ENOLATE REACTIONS AT OXYGEN PREPARATION OF ENOL ETHERS... [Pg.467]

Electrophilic aromatic substitution ch21 mechanism Enol and enolate reactions ch25 ch26... [Pg.562]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

Allenes also react with aryl and alkenyl halides, or triflates, and the 7r-allyl-palladium intermediates are trapped with carbon nucleophiles. The formation of 283 with malonate is an example[186]. The steroid skeleton 287 has been constructed by two-step reactions of allene with the enol trillate 284, followed by trapping with 2-methyl-l,3-cyclopentanedione (285) to give 286[187]. The inter- and intramolecular reactions of dimethyl 2,3-butenylmalonate (288) with iodobenzene afford the 3-cyclopentenedicarboxylate 289 as a main product) 188]. [Pg.167]

Aldol Addition and Related Reactions. Procedures that involve the formation and subsequent reaction of anions derived from active methylene compounds constitute a very important and synthetically useful class of organic reactions. Perhaps the most common are those reactions in which the anion, usually called an enolate, is formed by removal of a proton from the carbon atom alpha to the carbonyl group. Addition of this enolate to another carbonyl of an aldehyde or ketone, followed by protonation, constitutes aldol addition, for example... [Pg.471]

Potassium Amides. The strong, extremely soluble, stable, and nonnucleophilic potassium amide base (42), potassium hexamethyldisilazane [40949-94-8] (KHMDS), KN [Si(CH2]2, pX = 28, has been developed and commercialized. KHMDS, ideal for regio/stereospecific deprotonation and enolization reactions for less acidic compounds, is available in both THF and toluene solutions. It has demonstrated benefits for reactions involving kinetic enolates (43), alkylation and acylation (44), Wittig reaction (45), epoxidation (46), Ireland-Claison rearrangement (47,48), isomerization (49,50), Darzen reaction (51), Dieckmann condensation (52), cyclization (53), chain and ring expansion (54,55), and elimination (56). [Pg.519]

Potassium Hydride. Potassium hydride [7693-26-7] KH, made from reaction of molten potassium metal with hydrogen at ca 200°C, is suppHed in an oil dispersion. Pressure Chemical Company (U.S.) is a principal suppHer. KH is much more effective than NaH or LiH for enolization reactions (63,64). Use of KH as a base and nucleophile has been reviewed (65). [Pg.519]

Metal alkoxides cataly2e the Tishchenko condensation of aldehydes (62), the transesterification of carboxyhc esters, the Meerwein-Poimdorf reaction (63), and other enolization and condensation reactions. [Pg.24]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

This procedure illustrates a new method for the preparation of 6-alkyl-a,g-unsaturated esters by coupling lithium dialkylcuprates with enol phosphates of g-keto esters. The procedure for the preparation of methyl 2-oxocyclohexanecarboxylate described in Part A Is based on one reported by Ruest, Blouin, and Deslongcharaps. Methyl 2-methyl-l-cyc1ohexene-l-carboxylate has been prepared by esterification of the corresponding acid with dlazomethane - and by reaction of methyl 2-chloro-l-cyclohexene-l-carboxyl ate with lithium dimethylcuprate. -... [Pg.21]

Interestingly enough, both protons at C-11 are exchanged quite readily in 12-keto steroids. In these compounds C-11 is the only possible enolization site where the axial (/3) proton is probably expelled first. During ketonization, the deuteron attack is more likely to occur from the less hindered a-side. By this sequence the proton which was originally at the lla-equato-rial position becomes axial and readily available for expulsion in the next enolization step. Thus, isomerization of the C-11 hydrogens may be an important reason for the facile exchange at this position. (For a more detailed discussion of the mechanism of enolization and ketonization reactions, see ref 114.)... [Pg.150]

In contrast, fluorinated ketones have been used as both nucleophilic and electrophilic reaction constituents The (Z)-lithium enolate of 1 fluoro 3,3-di-methylbutanone can be selectively prepared and undergoes highly diastereoselec-tive aldol condensations with aldehydes [7] (equation 8) (Table 4)... [Pg.617]

Carbohydrates undergo a number of isomerization and degradation reactions under both laboratory and physiological conditions. For example, a mixture of glucose, fructose, and mannose results when any one of them is treated with aqueous base. This reaction can be understood by examining the consequences of enolization of glucose ... [Pg.1056]

The acylation of enamino ketones can take place on oxygen or on carbon. While reaction at nitrogen is a possibility, the N-acylated products are themselves acylating agents, and further reaction normally takes place. The first reported acylation of enamino ketones (72) was that of 129, prepared by acylation of the enamine (113), which was shown to have undergone O acylation because on mild hydrolysis the enol ester (130) could be isolated. A similar reaction took place with other aliphatic acid chlorides (80) and with dibasic acid chlorides [e.g., with succinyl chloride to give 118 above]. [Pg.142]

As noted previously, conjugate addition of a nucleophile to the j3 carbon of an cr,/3-unsaturated aldehyde or ketone leads to an enolate ion intermediate, which is protonated on the a carbon to give the saturated product (Figure 19.16). The net effect is addition of the nucleophile to the C=C bond, with the carbonyl group itself unchanged. In fact, of course, the carbonyl group is crucial to the success of the reaction. The C=C bond would not be activated for addition, and no reaction would occur, without the carbonyl group. [Pg.726]

When an alkene reacts with an electrophile, such as HC1, initial addition of H+ gives an intermediate cation and subsequent reaction with Cl" yields an addition product (Section 6.7). When an enol reacts with an electrophile, however, only the initial addition step is the same. Instead of reading with Cl- to give an addition product, the intermediate cation loses the -OH proton to give an cr-substituted carbonyl compound. The general mechanism is showm in Figure 22.3. [Pg.845]

Interactive to use a web-based palette to predict products in halogenation and alkylation reactions of carbonyl enolates. [Pg.855]

The enol ether double bond contained within the ds-fused dioxa-bicyclo[3.2.0]heptene photoadducts can also be oxidized, in a completely diastereoselective fashion, with mCPBA. Treatment of intermediate XXII, derived in one step from a Patemo-Buchi reaction between 3,4-dimethylfuran and benzaldehyde, with mCPBA results in the formation of intermediate XXIII. Once again, consecutive photocycloaddition and oxidation reactions furnish a highly oxygenated system that possesses five contiguous stereocenters, one of which is quaternary. Intermediate XXIII is particularly interesting because its constitution and its relative stereochemical relationships bear close homology to a portion of a natural product known as asteltoxin. [Pg.321]

In an effort to make productive use of the undesired C-13 epimer, 100-/ , a process was developed to convert it into the desired isomer 100. To this end, reaction of the lactone enolate derived from 100-) with phenylselenenyl bromide produces an a-selenated lactone which can subsequently be converted to a,) -unsaturated lactone 148 through oxidative syn elimination (91 % overall yield). Interestingly, when 148 is treated sequentially with lithium bis(trimethylsilyl)amide and methanol, the double bond of the unsaturated lactone is shifted, the lactone ring is cleaved, and ) ,y-unsaturated methyl ester alcohol 149 is formed in 94% yield. In light of the constitution of compound 149, we were hopeful that a hydroxyl-directed hydrogenation52 of the trisubstituted double bond might proceed diastereoselectively in the desired direction In the event, however, hydrogenation of 149 in the presence of [Ir(COD)(py)P(Cy)3](PF6)53 produces an equimolar mixture of C-13 epimers in 80 % yield. Sequential methyl ester saponification and lactonization reactions then furnish a separable 1 1 mixture of lactones 100 and 100-) (72% overall yield from 149). [Pg.775]

The stereochemical outcome of these reactions is opposite to the enolate reactions described above and has been rationalized as arising from attack on a ground-state conformation in which the sulfoxide (S = 0) and C—C double bonds are syn coplanar2-7. Nucleophilic attack occurs from the least sterically demanding 7t-face, which is anti to the phenyl substituent of the sulfur. Recent theoretical calculations also support this ground-state conformation8. [Pg.1043]

Protonation of the enolate ion is chiefly at the oxygen, which is more negative than the carbon, but this produces the enol, which tautomerizes. So, although the net result of the reaction is addition to a carbon-carbon double bond, the mechanism is 1,4 nucleophilic addition to the C=C—C=0 (or similar) system and is thus very similar to the mechanism of addition to carbon-oxygen double and similar bonds (see Chapter 16). When Z is CN or a C=0 group, it is also possible for Y to attack at this carbon, and this reaction sometimes competes. When it happens, it is called 1,2 addition. 1,4 Addition to these substrates is also known as conjugate addition. The Y ion almost never attacks at the 3 position, since the resulting carbanion would have no resonance stabilization " ... [Pg.976]

Among the preformed enol derivatives used in this way have been enolates of magnesium, lithium, titanium, zirconium, and tin, ° silyl enol ethers, enol borinates,and enol borates, R CH=CR"—OB(OR)2. The nucleophilicity of silyl enol ethers has been examined. In general, metallic Z enolates give the syn (or erythro) pair, and this reaction is highly useful for the diastereoselective synthesis of these products. The ( ) isomers generally react nonstereoselectively. However, anti (or threo) stereoselectivity has been achieved in a number of cases, with titanium enolates, with magnesium enolates, with certain enol bor-inates, and with lithium enolates at — 78°C. ... [Pg.1221]


See other pages where Enol and enolate reactions is mentioned: [Pg.82]    [Pg.24]    [Pg.208]    [Pg.276]    [Pg.529]    [Pg.216]    [Pg.48]    [Pg.146]    [Pg.155]    [Pg.276]    [Pg.356]    [Pg.387]    [Pg.411]    [Pg.124]    [Pg.179]    [Pg.1163]    [Pg.454]    [Pg.761]    [Pg.472]    [Pg.523]    [Pg.237]    [Pg.774]    [Pg.1024]    [Pg.55]    [Pg.337]   


SEARCH



Aldol Reaction with () and (Z) Enolates

Aldol Reactions of Chiral Imides and Ester Enolates

Boron and Silicon Enolates in Crossed Aldol Reaction

Chemoselective Carbonylation Reactions of Enol Triflates and lodoalkenes

Condensation Reactions of Enols and Enolates

Elimination Reactions of Alcohols, Enols, and Phenols

Enolization and Related Reactions

Enols and reactions with

In Situ Direct Generation of Enolates and Their Asymmetric Aldol Addition Reactions

Manganese enolates synthesis and reaction

Molybdenum enolates synthesis and reaction

Reactions at the a Carbon of Carbonyl Compounds Enols and Enolates

Reactions of Enol Ethers and Esters

Reactions of Enolates and Enolate Equivalents

Reactions of Enols and Enolate Anions

Reactions of Enols and Enolates with Electrophiles

Reactions of enolates with aldehydes and ketones the aldol reaction

Reactions via Enols and Enolates

Reactions with Enolates and Their Derivatives

Rearrangement Reactions of Alcohols, Enols, and Phenols

Substitution Reactions of Alcohol, Enols, and Phenols

Substitution Reactions of Alcohols, Enols, and Phenols at Oxygen

Tungsten enolates synthesis and reaction

© 2024 chempedia.info