Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol amidation with amide

A direct application of the ring-opening reaction of an epoxide by a metal enolate amide for the synthesis of a complex molecule can be found in the synthesis of the trisubstituted cyclopentane core of brefeldin A (Scheme 8.35) [68a]. For this purpose, treatment of epoxy amide 137 with excess KH in THF gave a smooth cyclization to amide 138, which was subsequently converted into the natural product. No base/solvent combination that would effect cyclization of the corresponding aldehyde or ester could be found. [Pg.296]

In general, the rate of syn/anti equilibration increases with decreasing basicity of the enolate and with increasing steric repulsion in the enolate. The first point is illustrated by the fact that aldolates derived from ketones (X = aryl, alkyl) undergo syn/anti equilibration more readily than those derived from amides or carboxylates (X = NR2,0-). It appears that the rate of the retro-aldol addition is higher when the enolate thereby generated is more stable. [Pg.455]

Ketones and carboxylic esters can be a hydroxylated by treatment of their enolate forms (prepared by adding the ketone or ester to LDA) with a molybdenum peroxide reagent (MoOs-pyridine-HMPA) in THF-hexane at -70°C. The enolate forms of amides and estersand the enamine derivatives of ketones can similarly be converted to their a hydroxy derivatives by reaction with molecular oxygen. The M0O5 method can also be applied to certain nitriles. Ketones have also been Qc hydroxylated by treating the corresponding silyl enol ethers with /n-chloroperoxy-... [Pg.915]

Scheme 9.19 Amidation of the enol triflate with acetamide. Scheme 9.19 Amidation of the enol triflate with acetamide.
The kinetic enolization of esters with amide bases such as lithium diisopropylamide (LDA) and the resultant aldol condensations with representative aldehydes have been investigated by several groups (2,32,33). The enolate stereochemical assignments were determined by silylation in direct analogy to studies reported by Ireland (34). The preponderance of (E )-enolate observed with LDA (THF) in these... [Pg.26]

In studies not yet published (66), the A/-acyl-oxazolidine-2-one 62 has been found to exhibit exceptionally high levels of (Z)-enolization stereoselection with either amide bases (LDA, THF, -78°C) or boryl triflates [(n-C4H9)2BOTf, CH2CI2, -78°C] in the presence of diiso-propylethylamine (DPEA). Upon aldol condensation, the enolates 63a and 63b afford the aldolates 64 (Scheme 11), which react readily with nucleophiles at the carbonyl function (Table 22). As discussed earlier, the large preference for (Z)-enolate formation in this system can be attributed to allylic strain considerations (37)... [Pg.46]

Amination of ketene has been studied by ab initio methods.Reactions of ammonia, its dimer, and its (mono)hydrate with ketene have been calculated and compared with earlier smdies of ammonia (at lower levels of theory), of water, and of water dimer. In general, the results favour initial addition of ammonia to the C=0 bond (giving the enol amide), as against addition to the C=C bond (which gives the amide directly). Amide formation is compared with the corresponding hydration reaction where enol acid and acid are the alternative immediate products. Most of the reactions, i.e. both additions and tautomerizations, are suggested to involve cyclic six-membered transition states. [Pg.4]

Note that acids, and primary and secondary amides cannot be employed to generate enolate anions. With acids, the carboxylic acid group has pATa of about 3-5, so the carboxylic proton will be lost much more easily than the a-hydrogens. In primary and secondary amides, the N-H (pATa about 18) will be removed more readily than the a-hydrogens. Their acidity may be explained because of resonance stabilization of the anion. Tertiary amides might be used, however, since there are no other protons that are more acidic. [Pg.373]

By contrast, lithium enolates derived from tertiary amides do react with oxiranes The diastereoselectivity in the reaction of simple amide enolates with terminal oxiranes has been addressed and found to be low (Scheme 45). The chiral bicyclic amide enolate 99 reacts with a good diastereoselectivity with ethylene oxide . The reaction of the chiral amide enolate 100 with the chiral oxiranes 101 and 102 occurs with a good diastereoselectivity (in the matched case ) interestingly, the stereochemical course is opposite to the one observed with alkyl iodides. The same reversal is found in the reaction of the amide enolate 103. By contrast, this reversal in diastereoselectivity compared to alkyl iodides was not found in the reaction of the hthium enolate 104 with the chiral oxiranes 105 and 106 °. It should be noted that a strong matched/mismatched effect occurs for enolates 100 and 103 with chiral oxiranes, and excellent diastereoselec-tivities can be achieved. [Pg.1203]

Substituted cyclohexanones, bearing a methyl, isopropyl, tert-butyl or phenyl group, give, on deprotonation with various chiral lithium amides in the presence of chlorotrimethylsilane (internal quench), the corresponding chiral enol ethers with moderate to apparently high enantioselec-tivity and in good yield (see Table 2)13,14,24> 29 36,37,55. Similar enantioselectivities are obtained with the external quench " technique when deprotonation is carried out in the presence of added lithium chloride (see Table 2, entries 5, 10, and 30)593. [Pg.596]

The feasibility of a deprotonation of cyclohexanone derivatives bearing a chiral heterocyclic substituent in the 4-position with the C2-symmetric base lithium bis[(/f)-l-phenylethyl]amide with internal quenching of the lithium enolate formed with chlorotrimethylsilane is shown in entries 32 and 33 of Table 229,25a. The silyl enol ethers are obtained in a diastereomeric ratio of 79.5 20.5. By using lithium bis[(1S)-l-phenylethyl]amide the two diastereomers are formed in a ratio of 20 80 indicating that the influence of the chirality of the substituent is negligible. [Pg.600]

The dominance of an alkoxy group over a silyl group is manifested in the generation of amides from reaction of oc-silyl enol ethers with chlorosulfonyl isocyanate, followed by hydrolysis. Simple vinylsilanes and alkynylsilanes undergo carbamidation [34],... [Pg.89]

A number of other methods exist for the a halogenation of carboxylic acids or their derivatives.134 The acids or their chlorides or anhydrides can be a chlorinated by treatment with CuCl in polar inert solvents (e.g., sulfolane).135 Acyl halides can be a brominated or chlorinated by use of N-bromo- or N-chlorosuccinimide and HBr or HC1.136 The latter is an ionic, not a free-radical halogenation (see 4-2). Direct iodination of carboxylic acids has been achieved with L-Cu(II) acetate in HO Ac.137 Acyl chlorides can be a iodinated with L and a trace of HI.138 Carboxylic esters can be a halogenated by conversion to their enolate ions with lithium N-isopropylcyclohexylamide in THF and treatment of this solution at - 78° with I2138 or with a carbon tetrahalide.139 Carboxylic acids, esters, and amides have been a fluorinated at -78°C with F2 diluted in Ni.,4°... [Pg.590]

Optically active a -hydroxy acids The enolate of the amide (2) derived from phenylacetic acid and L-prolinol (10,332) is oxidized by 2-(phenylsulfonyl)-3-phen-yloxaziridine (1) to give optically active a-hydroxy amides (3). Significantly, the configuration of 3 depends upon the base. The lithio enolate (LDA) is converted to the (S)-isomer in >95% de, whereas the sodio enolate, generated with NaN[Si(CH3)3]2, is converted into the (R)-isomer in 93% de. [Pg.23]

Asymmetric hydraxylation of lithium enolates of esters and amides.2 Hydroxylation of typical enolates of esters with ( + )- and (-)-l is effected in 75-90% yield and with 55-85% ee. The reaction with amide enolates with ( + )- and ( — )-l results in the opposite configuration to that obtained with ester enolates and with less enantioselectivity. Steric factors appear to predominate over metal chelation. [Pg.65]

Stereoselective Michael additions. In the absence of strong steric effects, the stereochemistry of Michael addition of amide enolates depends on the enolate geometry, with (Z)-enolates giving mainly antf-adducts and (E)-enolates giving mainly syn-adducts.1 Ester enolates show higher stereoselectivity than amide enolates, as shown by the (E)- and (Z)-enolates of r-butyl propionate (1). The (E)-... [Pg.142]

Perhaps the most useful type of alkene substrates for these reactions are enol ethers, enol esters and vinyl sulfides. Silyl enol ethers have excellent electron-donor properties, with an ionization potential of about 8 eV and an oxidation potential in various solvents of approximately 1.0-1.5 V vs SCE161. These compounds are easily synthesized by reaction of an enolate with a chlorosilane. (A very recent report synthesized a variety of silyl enol ethers with extremely high stereochemical yield, using the electrogenerated amidate of 2-pyrolidinone as the base.)162 An interesting point is that the use of oxidative or reductive cyclization reactions allows carbonyl functionalities to be ambivalent, either oxidizable or reducible (Scheme 65)163. [Pg.1334]

Ketone dilithio-c /S-dianions (30, formed by treatment of /3 -stannylketones, RCOCH2-CH2SnBuCl2, with 4 equiv. of BuLi) react with imines and hydrazone selectively at the /3-anion portion to give dilithium enolate amides (31).82 Subsequent reaction with electrophiles gives y-amino ketones and related heterocycles. [Pg.12]

As with MOH- or MOU-catalyzed aldol additions (M = Na or K Figure 13.44), MOH- or MOH-catalyzed aldol condensations (M = Na or K) can be carried out only with aldehyde or ketone enolates, not with ester or amide enolates. The reason for this is the same as discussed before, namely, that ester and amides are less acidic than carbonyl compounds and the amounts of enolate they form with the bases mentioned are much too small. [Pg.566]

Their stability at low temperature means that lithium enolates are usually preferred, but sodium and potassium enolates can also be formed by abstraction of a proton by strong bases. The increased separation of the metal cation from the enolate anion with the larger alkali metals leads to more reactive but less stable enolates. Typical very strong Na and K bases include the hydrides (NaH, KH) or amide anions derived from ammonia (NaNH2, KNH2) or... [Pg.669]

Lithium enolates are usually made at low temperature in THF with a hindered lithium amide base (often LDA) and are stable under those conditions because of the strong O-Li bond. The formation of the enolate begins with Li-O bond formation before the removal of the proton from the a position by the basic nitrogen atom. [Pg.698]


See other pages where Enol amidation with amide is mentioned: [Pg.773]    [Pg.164]    [Pg.783]    [Pg.1350]    [Pg.415]    [Pg.512]    [Pg.309]    [Pg.295]    [Pg.5]    [Pg.94]    [Pg.295]    [Pg.488]    [Pg.108]    [Pg.595]    [Pg.600]    [Pg.717]    [Pg.849]    [Pg.472]    [Pg.699]    [Pg.597]    [Pg.699]    [Pg.1041]    [Pg.467]    [Pg.256]    [Pg.347]    [Pg.661]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Aldehydes, reaction with amide enolate anions

Amide enolate

Amide enolates, reactions with electrophiles

Amides enolates

Amides, enolates, reaction with

Anhydrides, reaction with amide enolates

Enol amidation

Enol amidation with acetamide

Enolate anions, amide, reaction with

Epoxides, reaction with amide enolates

Esters, reaction with amide enolates

© 2024 chempedia.info