Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Retro-Aldol addition

The classical aldol addition, which is usually run in protic solvents, is reversible. Most modern aldol methodologies, however, rely on highly reactive preformed metal enolates, whereby proton donors are rigorously excluded. As a consequence, the majority of recent stereoselective aldol additions are performed under kinetic control. Despite this, reversibility and, as a consequence, an equilibration of yrn-aldolates to a t/-aldolates by retro-aldol addition, should not be excluded a priori. [Pg.454]

In general, the rate of syn/anti equilibration increases with decreasing basicity of the enolate and with increasing steric repulsion in the enolate. The first point is illustrated by the fact that aldolates derived from ketones (X = aryl, alkyl) undergo syn/anti equilibration more readily than those derived from amides or carboxylates (X = NR2,0-). It appears that the rate of the retro-aldol addition is higher when the enolate thereby generated is more stable. [Pg.455]

Leaving the (retro-)aldol addition-initiated threefold anionic domino processes, we are now describing sequences which are initiated by a SN-type transformation. In particular, domino reactions based on SN/1,4-Brook rearrangement/SN reactions are well known. For example, the group of Schaumann obtained functionalized cyclopentanols of type 2-461 by addition of lithiated silyldithioacetals 2-458 to epoxy-homoallyl tosylates 2-459 in 41-75% yield (Scheme 2.106) [248]. [Pg.120]

Continuing with the diastereomerically pure tricycle 56, an 11-step sequence consisting of redox and protective group chemistry was necessary to generate a / -hydroxy keton (58) suitable for a retro-aldol addition via an intermediate alkoxide to the highly substituted cyclopentanone 52 (Scheme 6). [Pg.85]

In conclusion, the longest linear sequence of Yamada s (-)-claenone (42) synthesis consist of 40 steps (6 C/C connecting transformation) with an overall yield of 2.1%. The centrepiece of Yamada s synthetic strategy is the sequence of two Michael additions and a retro-aldol addition to provide a highly substituted cyclopentanone building block (52). [Pg.87]

The structural similarity between claenone (42) and stolonidiol (38) enabled Yamada to exploit an almost identical strategy for the total synthesis of (-)-stolonidiol (38) [40]. A short retrosynthetic analysis is depicted in Fig. 12. An intramolecular HWE reaction of 68 was successfully applied for the macrocyclization. The highly substituted cyclopentanone 69 was made available by a sequence that is highlighted by the sequential Michael-Mi-chael addition between the enolate 53 and the a, -unsaturated ester 70 followed by a retro-aldol addition. However, as is the case for the claenone (42) synthesis, the synthesis of stolonidiol (38) is characterized by numerous functional and protecting group transformations that are a consequence of Yamada s synthetic strategy. [Pg.88]

Scheme 11 Enolate alkylation and retro-aldol addition as key steps toward the building block 69... Scheme 11 Enolate alkylation and retro-aldol addition as key steps toward the building block 69...
In this system, the chiral phase transfer catalyst (PTC) is able to recognize one aldolate selectively. There is an equilibrium between syn- and anti-aldolates via retro-aldol addition, and the formation of a stable, chelated lithium salt blocks the non-catalyzed subsequent reaction from yielding the epoxide product ... [Pg.93]

Scheme3.2. Fragmentation via retro-Diels-Alder cycloaddition and retro-aldol addition. Scheme3.2. Fragmentation via retro-Diels-Alder cycloaddition and retro-aldol addition.
The second example in Scheme 3.3 illustrates the reversibility of aldol additions. The starting bicyclic ketone is a vinylogous aldol which upon treatment with base undergoes retro-aldol addition by deavage of a strained, hexasubstituted ethane sub-... [Pg.37]

Thermodynamic control. Note that it is also possible for the aldolate adduct to revert to aldehyde and enolate, and equilibration to the thermodynamic product may afford a different diastereomer (the anti aldolate is often the more stable). The tendency for aldolates to undergo the retro aldol addition increases with the acidity of the enolate amides < esters < ketones (the more stable enolates are more likely to fragment), and with the steric bulk of the substituents (bulky substituents tend to destabilize the aldolate and promote fragmentation). On the other hand, a highly chelating metal stabilizes the aldolate and retards fragmentation. The slowest equilibration is with boron aldolates, and increases in the series lithium < sodium < potassium, and (with alkali metal enolates) also increases in the presence of crown ethers. ... [Pg.174]

This reaction is very closely related to Acetoacetic Ester Condensation, and mechanistically, the cleavage of /3-ketoesters under strong base conditions is similar to the Retro-Aldol Addition. [Pg.10]

Because an aldol addition is reversible, when the product of an aldol addition (the jS-hydroxyaldehyde or 8-hydroxyketone) is heated with hydroxide ion and water, the aldehyde or ketone that formed the aldol addition product can be regenerated. In Section 18.21 we will see that a retro-aldol addition is an important reaction... [Pg.870]

The reaction catalyzed by aldolase is reversible. The reverse reaction—the cleavage of fructose-1,6-bisphophate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate—is a retro-aldol addition (see page 870). The mechanism for this reaction is discussed in Section 23.12. [Pg.890]

The substrate for the first enzyme-catalyzed reaction in the series of reactions known as glycolysis is D-glucose (a six-carbon compound). The final product of glycolysis is two molecules of pyruvate (a three-carbon compound). Therefore, at some point in the series of enzyme-catalyzed reactions, a six-carbon compound must be cleaved into two three-carbon compounds. The enzyme aldolase catalyzes this cleavage. (Aldolase converts fructose-1,6-bisphosphate into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. The enzyme is called aldolase because the reaction it catalyzes is a retro-aldol addition—that is, it is the reverse of an aldol addition (Section 18.10). [Pg.1126]

Prodrug activation via a tandem retro-aldol- additional linker arm to enable efficient... [Pg.294]

This cleavage is a retro aldol reaction It is the reverse of the process by which d fruc tose 1 6 diphosphate would be formed by aldol addition of the enolate of dihydroxy acetone phosphate to d glyceraldehyde 3 phosphate The enzyme aldolase catalyzes both the aldol addition of the two components and m glycolysis the retro aldol cleavage of D fructose 1 6 diphosphate... [Pg.1058]

Cleavage reactions of carbohydrates also occur on treatment with aqueous base for prolonged periods as a consequence of base catalyzed retro aldol reactions As pointed out m Section 18 9 aldol addition is a reversible process and (3 hydroxy carbonyl com pounds can be cleaved to an enolate and either an aldehyde or a ketone... [Pg.1058]

In E. coli GTP cyclohydrolase catalyzes the conversion of GTP (33) into 7,8-dihydroneoptetin triphosphate (34) via a three-step sequence. Hydrolysis of the triphosphate group of (34) is achieved by a nonspecific pyrophosphatase to afford dihydroneopterin (35) (65). The free alcohol (36) is obtained by the removal of residual phosphate by an unknown phosphomonoesterase. The dihydroneoptetin undergoes a retro-aldol reaction with the elimination of a hydroxy acetaldehyde moiety. Addition of a pyrophosphate group affords hydroxymethyl-7,8-dihydroptetin pyrophosphate (37). Dihydropteroate synthase catalyzes the condensation of hydroxymethyl-7,8-dihydropteroate pyrophosphate with PABA to furnish 7,8-dihydropteroate (38). Finally, L-glutamic acid is condensed with 7,8-dihydropteroate in the presence of dihydrofolate synthetase. [Pg.41]

The ratio of products 15 and 16 is dependent on the structures, base, and the solvent. The kinetics of the reaction is likewise dependant on the structures and conditions of the reaction. Thus addition or cyclization can be the rate-determining step. In a particularly noteworthy study by Zimmerman and Ahramjian, it was reported that when both diastereomers of 20 were treated individually with potassium r-butoxide only as-epoxy propionate 21 was isolated. It is postulated that the cyclization is the rate-limiting step. Thus, for these substrates, the retro-aldolization/aldolization step reversible. ... [Pg.17]

The Pictet-Spengler condensation has been of vital importance in the synthesis of numerous P-carboline and isoquinoline compounds in addition to its use in the formation of alkaloid natural products of complex structure. A tandem retro-aldol and Pictet-Spengler sequence was utilized in a concise and enantioselective synthesis of 18-pseudoyohimbone. Amine 49 cyclized under acidic conditions to give the condensation product 50 in good yield. Deprotection of the ketone produced the indole alkaloid 51. [Pg.476]

Another example of a [4S+1C] cycloaddition process is found in the reaction of alkenylcarbene complexes and lithium enolates derived from alkynyl methyl ketones. In Sect. 2.6.4.9 it was described how, in general, lithium enolates react with alkenylcarbene complexes to produce [3C+2S] cycloadducts. However, when the reaction is performed using lithium enolates derived from alkynyl methyl ketones and the temperature is raised to 65 °C, a new formal [4s+lcj cy-clopentenone derivative is formed [79] (Scheme 38). The mechanism proposed for this transformation supposes the formation of the [3C+2S] cycloadducts as depicted in Scheme 32 (see Sect. 2.6.4.9). This intermediate evolves through a retro-aldol-type reaction followed by an intramolecular Michael addition of the allyllithium to the ynone moiety to give the final cyclopentenone derivatives after hydrolysis. The role of the pentacarbonyltungsten fragment seems to be crucial for the outcome of this reaction, as experiments carried out with isolated intermediates in the absence of tungsten complexes do not afford the [4S+1C] cycloadducts (Scheme 38). [Pg.87]

Another interesting example is SHMT. This enzyme catalyzes decarboxylation of a-amino-a-methylmalonate with the aid of pyridoxal-5 -phosphate (PLP). This is an unique enzyme in that it promotes various types of reactions of a-amino acids. It promotes aldol/retro-aldol type reactions and transamination reaction in addition to decarboxylation reaction. Although the types of apparent reactions are different, the common point of these reactions is the formation of a complex with PLP. In addition, the initial step of each reaction is the decomposition of the Schiff base formed between the substrate and pyridoxal coenzyme (Fig. 7-3). [Pg.309]

It can be assumed that, upon irradiation, tautomer 5-40-II reacts with the alkene 5-41 in a highly regioselective [2+2] cycloaddition to give the cyclobutane 5-42 as an intermediate. Subsequent retro-aldol-type reaction and hemiacetal formation produces 5-44 via 5-43. After addition of the Lewis acid (BF3-Et20), cyclization takes place to give the desired products. It should be noted that the excess of alkene must be removed under reduced pressure before addition of the Lewis acid in order to avoid polymerization. [Pg.344]

Unfortunately, upon treating hydroxy ketone 56 with MeLi for extended reaction times, some sort of fragmentation reaction appeared to occur (Scheme 8.15). While the desired addition product 63 was not seen, the fragmentation that took place may be attributed to a retro-aldol reaction through intermediates such as 60 and 61. The tentatively assigned structure of final product 62 is shown, although it was not fully... [Pg.197]

The recognition of consonant bifunctional relationships in the target molecule allows their disconnection by a retro-Claisen, a retro-aldol or a retro-Mannich condensation or by retro-Michael addition [equivalent, according to Corey s formalisation, to the application of the corresponding transforms (= operators) to the appropriate retrons]. [Pg.89]

Bifunctional systems In the case of bifunctional systems (or molecules) only two alternatives are possible the bifunctional relationships are either "consonant" or "dissonant" (apart from molecules or systems with functional groups of type A to which we have referred to as "assonant"). In the first case, the synthetic problem will have been solved, in principle, in applying the "heuristic principle" HP-2 that is to say, the molecule will be disconnected according to a retro-Claisen, a retro-aldol or a retro-Mannich condensation, or a retro-Michael addition, proceeding if necessary by a prior adjustment of the heteroatom oxidation level (FGI). [Pg.106]


See other pages where Retro-Aldol addition is mentioned: [Pg.121]    [Pg.83]    [Pg.86]    [Pg.121]    [Pg.870]    [Pg.148]    [Pg.121]    [Pg.83]    [Pg.86]    [Pg.121]    [Pg.870]    [Pg.148]    [Pg.1176]    [Pg.455]    [Pg.1339]    [Pg.156]    [Pg.88]    [Pg.114]    [Pg.117]    [Pg.1086]    [Pg.1088]    [Pg.718]    [Pg.111]    [Pg.426]    [Pg.317]   
See also in sourсe #XX -- [ Pg.37 ]

See also in sourсe #XX -- [ Pg.870 ]




SEARCH



Aldol addition

Aldol addition reactions retro

Michael addition-retro-aldol

Retro aldol

Retro-1,4-addition

© 2024 chempedia.info