Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enforcing

Standards are generally not made into law and therefore are not enforced but depend on voluntary compliance. Their only strength lies in the consensus obtained during their preparation. There are, nevertheless, a few exceptions it can happen that a decree or directive gives a standard an obligatory nature. [Pg.294]

The standards for classifications and characteristics. They look completely like specifications but they are not enforced by law. Instead of speaking about standards for characteristics, it is more common to talk about standards for specifications. In spite of its very general usage, this expression is unfortunate because it continues to foster confusion between standards and specifications. [Pg.294]

Monitoring is normally adopted as a mechanism to check that any conditions imposed on the project are being enforced or to check the quality of the affected environment. [Pg.73]

Related results of promotion (catalysis) and inliibition of stereonuitation by vibrational excitation have also been obtained for the much larger molecule, aniline-NHD (CgH NHD), which shows short-time chirality and stereonuitation [104. 105]. This kind of study opens the way to a new look at kinetics, which shows coherent and mode-selective dynamics, even in the absence of coherent external fields. The possibility of enforcing coherent dynamics by fields ( coherent control ) is discussed in chapter A3.13. [Pg.2144]

It is well noted that, in contiast to the two-state equation [see Eq. (26)], Eq. (25) contains an additional, nonlinear term. This nonlinear term enforces a perturbative scheme in order to solve the required x-matrix elements. [Pg.697]

If both starting structure and target structure are known, the method of targeted molecular dynamics simulation can be used to enforce a conformational transition towards the given final structure during a given simulation time ([Schlitter et al. 1994]). [Pg.74]

The first term represents the forces due to the electrostatic field, the second describes forces that occur at the boundary between solute and solvent regime due to the change of dielectric constant, and the third term describes ionic forces due to the tendency of the ions in solution to move into regions of lower dielectric. Applications of the so-called PBSD method on small model systems and for the interaction of a stretch of DNA with a protein model have been discussed recently ([Elcock et al. 1997]). This simulation technique guarantees equilibrated solvent at each state of the simulation and may therefore avoid some of the problems mentioned in the previous section. Due to the smaller number of particles, the method may also speed up simulations potentially. Still, to be able to simulate long time scale protein motion, the method might ideally be combined with non-equilibrium techniques to enforce conformational transitions. [Pg.75]

As an example for an efficient yet quite accurate approximation, in the first part of our contribution we describe a combination of a structure adapted multipole method with a multiple time step scheme (FAMUSAMM — fast multistep structure adapted multipole method) and evaluate its performance. In the second part we present, as a recent application of this method, an MD study of a ligand-receptor unbinding process enforced by single molecule atomic force microscopy. Through comparison of computed unbinding forces with experimental data we evaluate the quality of the simulations. The third part sketches, as a perspective, one way to drastically extend accessible time scales if one restricts oneself to the study of conformational transitions, which arc ubiquitous in proteins and are the elementary steps of many functional conformational motions. [Pg.79]

Here a symmetric projection step is used to enforce conservation of energy. Let a(g,p) and b q,p) be two vector-valued functions such that (p a q,p) + U q) b q,p)) is bounded away from zero. Then we propose the following modified midpoint method,... [Pg.285]

This latter modified midpoint method does work well, however, for the long time integration of Hamiltonian systems which are not highly oscillatory. Note that conservation of any other first integral can be enforced in a similar manner. To our knowledge, this method has not been considered in the literature before in the context of Hamiltonian systems, although it is standard among methods for incompressible Navier-Stokes (where its time-reversibility is not an issue, however). [Pg.285]

Rotation matrices may be viewed as an alternative to particles. This approach is based directly on the orientational Lagrangian (1). Viewing the elements of the rotation matrix as the coordinates of the body, we directly enforce the constraint Q Q = E. Introducing the canonical momenta P in the usual manner, there results a constrained Hamiltonian formulation which is again treatable by SHAKE/RATTLE [25, 27, 20]. For a single rigid body we arrive at equations for the orientation of the form[25, 27]... [Pg.356]

Nowadays a broad range of methods is available in the field of chemoinfor-matics. These methods will have a growing impact on drug design. In particular, the discovery of new lead structures and their optimization will profit by virtual saeening [17, 66, 100-103]. The huge amounts of data produced by HTS and combinatorial chemistry enforce the use of database and data mining techniques. [Pg.616]

Level of enforcement of the incompressibility condition depends on the magnitude of the penalty parameter. If this parameter is chosen to be excessively large then the working equations of the scheme will be dominated by the incompressibility constraint and may become singular. On the other hand, if the selected penalty parameter is too small then the mass conservation will not be assured. In non-Newtonian flow problems, where shear-dependent viscosity varies locally, to enforce the continuity at the right level it is necessary to maintain a balance between the viscosity and the penalty parameter. To achieve this the penalty parameter should be related to the viscosity as A = Xorj (Nakazawa et al, 1982) where Ao is a large dimensionless parameter and tj is the local viscosity. The recommended value for Ao in typical polymer flow problems is about 10. ... [Pg.75]

Step 1 To solve a Stokes flow problem by this program the inertia term in the elemental stiffness matrix should be eliminated. Multiplication of the density variable by zero enforces this conversion (this variable is identified in the program listing). [Pg.215]

In summary, a wealtli of experimental data as well as a number of sophisticated computer simulations univocally indicate that two important effects underlie the acceleration of Diels-Alder reactions in aqueous media hydrogen bonding and enforced hydrophobic interactionsIn terms of transition state theory hydrophobic hydration raises the initial state more tlian tlie transition state and hydrogen bonding interactions stabilise ftie transition state more than the initial state. The highly polarisable activated complex plays a key role in both of these effects. [Pg.24]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

The relative extents to which enforced hydrophobic interactions and hydrogen bonding influence the rate of the Diels-Alder reaction depends on the particular reaction under study". [Pg.44]

Appreciating the beneficial influences of water and Lewis acids on the Diels-Alder reaction and understanding their origin, one may ask what would be the result of a combination of these two effects. If they would be additive, huge accelerations can be envisaged. But may one really expect this How does water influence the Lewis-acid catalysed reaction, and what is the influence of the Lewis acid on the enforced hydrophobic interaction and the hydrogen bonding effect These are the questions that are addressed in this chapter. [Pg.44]

Throughout this thesis reference has been made to hydrophobic effects. Enforced hydrophobic interactions are an important contributor to the acceleration of uncatalysed and also of the Lewis-acid catalysed Diels-Alder reactions which are described in this thesis. Moreover, they are likely to be involved in the beneficial effect of water on the enantioselectivity of the Lewis-acid catalysed Diels-Alder reaction, as described in Chapter 3. Because arguments related to hydrophobic effects are spread over nearly all chapters, and ideas have developed simultaneously, we summarise our insights at the end of this thesis. [Pg.165]

In the case of the retro Diels-Alder reaction, the nature of the activated complex plays a key role. In the activation process of this transformation, the reaction centre undergoes changes, mainly in the electron distributions, that cause a lowering of the chemical potential of the surrounding water molecules. Most likely, the latter is a consequence of an increased interaction between the reaction centre and the water molecules. Since the enforced hydrophobic effect is entropic in origin, this implies that the orientational constraints of the water molecules in the hydrophobic hydration shell are relieved in the activation process. Hence, it almost seems as if in the activated complex, the hydrocarbon part of the reaction centre is involved in hydrogen bonding interactions. Note that the... [Pg.168]

Also the arene-arene interactions, as encountered in Chapter 3, are partly due to hydrophobic effects, which can be ranked among enforced hydrophobic interactions. Simultaneous coordination of an aromatic oc amino acid ligand and the dienophile to the central copper(II) ion offers the possibility of a reduction of the number of water molecules involved in hydrophobic hydration, leading to a strengthening of the arene-arene interaction. Hence, hydrophobic effects can have a beneficial influence on the enantioselectivity of organic reactions. This effect is anticipated to extend well beyond the Diels-Alder reaction. [Pg.169]

The type of enforced hydrophobic effect that is operative in the retro Diels-Alder reaction cannot be referred to an enforced hydrophobic interaction, since there is no coming together, but rather a separation of nonpolar molecules during the reaction. It is better to refer to this process as an enforced hydrophobic effect. [Pg.170]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

Enforcing the molecular symmetry will also help orbital-based calculations run more quickly. This is because some of the integrals are equivalent by symmetry and thus need be computed only once and used several times. [Pg.75]

Molecules with rings should always be given a dummy atom in the center of the ring. The atoms in the ring should then be referenced to the central dummy atom rather than each other. Here is a Z-matrix for a benzene molecule enforcing Dfih symmetry ... [Pg.75]


See other pages where Enforcing is mentioned: [Pg.1010]    [Pg.1017]    [Pg.1017]    [Pg.30]    [Pg.651]    [Pg.2221]    [Pg.2367]    [Pg.2369]    [Pg.637]    [Pg.51]    [Pg.216]    [Pg.252]    [Pg.294]    [Pg.295]    [Pg.352]    [Pg.357]    [Pg.76]    [Pg.273]    [Pg.8]    [Pg.22]    [Pg.27]    [Pg.31]    [Pg.43]    [Pg.62]    [Pg.132]    [Pg.168]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Enforcement

© 2024 chempedia.info