Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy transfer relaxation

Let us analyze the energy balanee of CO2 dissociation stimulated in plasma by vibrational excitation in the two-temperature approximation, assuming one-dimentional gas motion with density p through the plasma in the x-direction with velocity u. Such an energy balance can be illustrated in the framework of the following equations describing major energy transfer, relaxation, and chemical reaction processes separately for different individual vibrational modes in the plasma-chemical system, which includes CO2 and products of its dissociation (Rusanov Fridman, 1984) ... [Pg.276]

This is no longer the case when (iii) motion along the reaction patir occurs on a time scale comparable to other relaxation times of the solute or the solvent, i.e. the system is partially non-relaxed. In this situation dynamic effects have to be taken into account explicitly, such as solvent-assisted intramolecular vibrational energy redistribution (IVR) in the solute, solvent-induced electronic surface hopping, dephasing, solute-solvent energy transfer, dynamic caging, rotational relaxation, or solvent dielectric and momentum relaxation. [Pg.831]

The fimdamental kinetic master equations for collisional energy redistribution follow the rules of the kinetic equations for all elementary reactions. Indeed an energy transfer process by inelastic collision, equation (A3.13.5). can be considered as a somewhat special reaction . The kinetic differential equations for these processes have been discussed in the general context of chapter A3.4 on gas kmetics. We discuss here some special aspects related to collisional energy transfer in reactive systems. The general master equation for relaxation and reaction is of the type [H, 12 and 13, 15, 25, 40, 4T ] ... [Pg.1050]

Note that in the low pressure limit of iinimolecular reactions (chapter A3,4). the unimolecular rate constant /fu is entirely dominated by energy transfer processes, even though the relaxation and incubation rates... [Pg.1053]

The dynamics of fast processes such as electron and energy transfers and vibrational and electronic deexcitations can be probed by using short-pulsed lasers. The experimental developments that have made possible the direct probing of molecular dissociation steps and other ultrafast processes in real time (in the femtosecond time range) have, in a few cases, been extended to the study of surface phenomena. For instance, two-photon photoemission has been used to study the dynamics of electrons at interfaces [ ]. Vibrational relaxation times have also been measured for a number of modes such as the 0-Fl stretching m silica and the C-0 stretching in carbon monoxide adsorbed on transition metals [ ]. Pump-probe laser experiments such as these are difficult, but the field is still in its infancy, and much is expected in this direction m the near fiitiire. [Pg.1790]

Mullin A S, Miohaels C A and Flynn G W 1995 Moleoular superoollisions evidenoe for large energy transfer in the oollisional relaxation of highly vibrationally exoited pyrazine by COj J. Chem. Phys. 102 6032-45... [Pg.3014]

Kr. In the B-emitting states, a slower stepwise relaxation was observed. Figure C3.5.5 shows the possible modes of relaxation for B-emitting XeF and some experimentally detennined time constants. Although a diatomic in an atomic lattice seems to be a simple system, these vibronic relaxation experiments are rather complicated to interiDret, because of multiple electronic states which are involved due to energy transfer between B and C sites. [Pg.3040]

Figure C3.5.5. Vibronic relaxation time constants for B- and C-state emitting sites of XeF in solid Ar for different vibrational quantum numbers v, from [25]. Vibronic energy relaxation is complicated by electronic crossings caused by energy transfer between sites. Figure C3.5.5. Vibronic relaxation time constants for B- and C-state emitting sites of XeF in solid Ar for different vibrational quantum numbers v, from [25]. Vibronic energy relaxation is complicated by electronic crossings caused by energy transfer between sites.
Fig. 4. A schematic diagram showing energy transfer from sensitizer S to activator M followed by relaxation from one electronic level to another and then... Fig. 4. A schematic diagram showing energy transfer from sensitizer S to activator M followed by relaxation from one electronic level to another and then...
In photoluminescence one measures physical and chemical properties of materials by using photons to induce excited electronic states in the material system and analyzing the optical emission as these states relax. Typically, light is directed onto the sample for excitation, and the emitted luminescence is collected by a lens and passed through an optical spectrometer onto a photodetector. The spectral distribution and time dependence of the emission are related to electronic transition probabilities within the sample, and can be used to provide qualitative and, sometimes, quantitative information about chemical composition, structure (bonding, disorder, interfaces, quantum wells), impurities, kinetic processes, and energy transfer. [Pg.29]

Jameson C. J., Jameson A. K., Smith N. C. 15N spin-relaxation studies of N2 in buffer gases. Cross-sections for molecular reorientation and rotational energy transfer, J. Chem. Phys. 86, 6833-8 (1987). [Pg.283]

The process of spin-lattice relaxation involves the transfer of magnetization between the magnetic nuclei (spins) and their environment (the lattice). The rate at which this transfer of energy occurs is the spin-lattice relaxation-rate (/ , in s ). The inverse of this quantity is the spin-lattice relaxation-time (Ti, in s), which is the experimentally determinable parameter. In principle, this energy interchange can be mediated by several different mechanisms, including dipole-dipole interactions, chemical-shift anisotropy, and spin-rotation interactions. For protons, as will be seen later, the dominant relaxation-mechanism for energy transfer is usually the intramolecular dipole-dipole interaction. [Pg.128]

FIGURE 34.3 Electron energy diagram. A fluctuation of the solvent polarization brings the energy levels and to the resonance position. After the electron transfer, the occupied energy level relaxes to its equilibrium position for the reduced form Ared-... [Pg.646]

Anti-Stokes picosecond TR spectra were also obtained with pump-probe time delays over the 0 to 10 ps range and selected spectra are shown in Figure 3.33. The anti-Stokes Raman spectrum at Ops indicates that hot, unrelaxed, species are produced. The approximately 1521 cm ethylenic stretch Raman band vibrational frequency also suggests that most of the Ops anti-Stokes TR spectrum is mostly due to the J intermediate. The 1521 cm Raman band s intensity and its bandwidth decrease with a decay time of about 2.5 ps, and this can be attributed the vibrational cooling and conformational relaxation of the chromophore as the J intermediate relaxes to produce the K intermediate.This very fast relaxation of the initially hot J intermediate is believed to be due to strong coupling between the chromophore the protein bath that can enable better energy transfer compared to typical solute-solvent interactions. ... [Pg.170]

Fig. 9. Incidence energy dependence of the vibrational state population distribution resulting when NO(u = 12) is scattered from LiF(OOl) at a surface temperature of (a) 480 K, and (b) 290 K. Relaxation of large amplitude vibrational motion to phonons is weak compared to what is possible on metals. Increased relaxation at the lowest incidence energies and surface temperatures are indicators of a trapping/desorption mechanism for vibrational energy transfer. Angular and rotational population distributions support this conclusion. Estimations of the residence times suggest that coupling to phonons is significant when residence times are only as long as ps. (See Ref. 58.)... Fig. 9. Incidence energy dependence of the vibrational state population distribution resulting when NO(u = 12) is scattered from LiF(OOl) at a surface temperature of (a) 480 K, and (b) 290 K. Relaxation of large amplitude vibrational motion to phonons is weak compared to what is possible on metals. Increased relaxation at the lowest incidence energies and surface temperatures are indicators of a trapping/desorption mechanism for vibrational energy transfer. Angular and rotational population distributions support this conclusion. Estimations of the residence times suggest that coupling to phonons is significant when residence times are only as long as ps. (See Ref. 58.)...
The saturation behavior of a spectrum - the variation of integrated intensity with microwave power - is related to the spin-lattice relaxation time, a measure of the rate of energy transfer between the electron spin and its surroundings. Saturation often depends on the same structural and dynamic properties as line widths. [Pg.18]


See other pages where Energy transfer relaxation is mentioned: [Pg.143]    [Pg.93]    [Pg.806]    [Pg.143]    [Pg.93]    [Pg.806]    [Pg.1437]    [Pg.1977]    [Pg.3013]    [Pg.3035]    [Pg.305]    [Pg.18]    [Pg.285]    [Pg.287]    [Pg.52]    [Pg.295]    [Pg.164]    [Pg.393]    [Pg.585]    [Pg.298]    [Pg.50]    [Pg.103]    [Pg.136]    [Pg.275]    [Pg.16]    [Pg.213]    [Pg.310]    [Pg.300]    [Pg.308]    [Pg.402]    [Pg.157]    [Pg.147]    [Pg.494]    [Pg.105]    [Pg.154]    [Pg.5]   
See also in sourсe #XX -- [ Pg.136 , Pg.137 ]




SEARCH



Cross-relaxation energy transfer

Energy relaxation

Energy transfer relaxation time

Relaxation energy, charge-transfer

Relaxation energy, charge-transfer transitions

© 2024 chempedia.info