Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy metabolism lactation

Figure 2. Force generation and energy metabolism in human quadriceps femoris muscle stimulated intermittently at 20 Hz, with 1.6 sec tetani with 1.6 sec rest periods between tetani. The upper panel shows force, ATP turnover rate, and pH the middle panel, the concentrations of PCr, P and lactate and the lower panel, ATP, ADP, IMP, H, and calculated H2PO4. From Hultman et al. (1990), with permission from Human Kinetics Publishers. Figure 2. Force generation and energy metabolism in human quadriceps femoris muscle stimulated intermittently at 20 Hz, with 1.6 sec tetani with 1.6 sec rest periods between tetani. The upper panel shows force, ATP turnover rate, and pH the middle panel, the concentrations of PCr, P and lactate and the lower panel, ATP, ADP, IMP, H, and calculated H2PO4. From Hultman et al. (1990), with permission from Human Kinetics Publishers.
The main source of brain energy metabolism is the continuous availability of glucose from the blood. To some extent, energy can be derived from glycogen, stored in astrocytes. Neurons also use lactate as an energy source, even under normoxic conditions. During neuronal activation, lactate may even be the... [Pg.342]

Parasitic stages, on the other hand, generally do not use oxygen as the final electron acceptor but use fermentative processes to obtain most of their ATP. For these stages, an uneconomical energy metabolism is not detrimental, as the host provides the nutrients. Most adult flatworms inside the final host produce end products of a fermentative carbohydrate breakdown, such as succinate, acetate, propionate and lactate. These end products are formed via malate dismutation, a fermentative pathway, which is present in all types of parasitic worms (flatworms as well as many nematodes), but which is also present in animals like freshwater snails, mussels, oysters and other marine organisms. Malate dismutation is linked to a specially... [Pg.404]

Fig. 5.4. Two types of energy metabolism in cestodes. (a) Type 1 homolactate fermentation, (b) Type 2 Malate dismutation. Reaction 3 involves a carboxylation step decarboxylation occurs at 6, 7 and 10. Reducing equivalents are generated at reactions 6 and 7 one reducing equivalent is used at reaction 9. Thus, when the mitochondrial compartment is in redox balance and malate is the sole substrate, twice as much propionate as acetate is produced. Key 1, pyruvate kinase 2, lactate dehydrogenase 3, phosphoenolpyruvate carboxykinase 4, malate dehydrogenase 5, mitochondrial membrane 6 malic enzyme 7, pyruvate dehydrogenase complex 8, fumarase 9, fumarate reductase 10, succinate decarboxylase complex. indicates reactions at which ATP is synthesised from ADP cyt, cytosol mit, mitochondrion. (After Bryant Flockhart, 1986.)... Fig. 5.4. Two types of energy metabolism in cestodes. (a) Type 1 homolactate fermentation, (b) Type 2 Malate dismutation. Reaction 3 involves a carboxylation step decarboxylation occurs at 6, 7 and 10. Reducing equivalents are generated at reactions 6 and 7 one reducing equivalent is used at reaction 9. Thus, when the mitochondrial compartment is in redox balance and malate is the sole substrate, twice as much propionate as acetate is produced. Key 1, pyruvate kinase 2, lactate dehydrogenase 3, phosphoenolpyruvate carboxykinase 4, malate dehydrogenase 5, mitochondrial membrane 6 malic enzyme 7, pyruvate dehydrogenase complex 8, fumarase 9, fumarate reductase 10, succinate decarboxylase complex. indicates reactions at which ATP is synthesised from ADP cyt, cytosol mit, mitochondrion. (After Bryant Flockhart, 1986.)...
Transformation by a single microbial species Some geomicrobial transformations in nature involve a single microbial species. An example of such a transformation is the anaerobic reduction of a Mn(IV) oxide to Mn " " by S. oneidensis or G. metallireducens in an environment with a plentiful supply of an appropriate electron donor like lactate for S. oneidensis or acetate for G. metallireducens. Because each of these two microbial species can perform the reduction by themselves, and because electron donors like lactate and acetate are formed as major end-products in the energy metabolism of a variety of microbes present in the same environment that harbours S. oneidensis or G. metallireducens, the latter do not need to form specific microbial associations to bring about Mn(IV) oxide reduction. [Pg.11]


See other pages where Energy metabolism lactation is mentioned: [Pg.537]    [Pg.670]    [Pg.183]    [Pg.322]    [Pg.179]    [Pg.9]    [Pg.101]    [Pg.152]    [Pg.261]    [Pg.391]    [Pg.400]    [Pg.401]    [Pg.645]    [Pg.12]    [Pg.163]    [Pg.81]    [Pg.83]    [Pg.258]    [Pg.260]    [Pg.234]    [Pg.234]    [Pg.237]    [Pg.250]    [Pg.97]    [Pg.66]    [Pg.179]    [Pg.55]    [Pg.77]    [Pg.86]    [Pg.87]    [Pg.109]    [Pg.152]    [Pg.340]    [Pg.594]    [Pg.269]    [Pg.181]    [Pg.194]    [Pg.234]    [Pg.235]    [Pg.181]    [Pg.194]    [Pg.234]    [Pg.235]    [Pg.176]    [Pg.400]   
See also in sourсe #XX -- [ Pg.301 , Pg.306 ]




SEARCH



Energy lactation

Energy metabolic

Energy metabolism

Lactate metabolism

© 2024 chempedia.info