Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Endothermic reactions, temperature

The effect of intrapellet mass transfer is to reduce the rate below what it would be if there were no internal-concentration gradient. The effect of the temperature gradient is to increase the rate for an exothermic reaction. This is because intrapellet temperatures will be greater than surface values. For endothermic reactions temperature and concentration gradients both reduce the rate below that evaluated at outer-surface conditions. [Pg.400]

The temperature affects the equilibrium yield primarily through its influence on the equilibrium constant K. From equation (2.5.2) it follows that for exothermic reactions the equilibrium conversion decreases as the temperature increases. The equilibrium yield increases with increasing temperature for endothermic reactions. Temperature changes also affect the value of K jp. The changes in this term, however, are generally very small compared to those in A . ... [Pg.11]

In the case of fast highly exothermic or endothermic reactions, temperature gradients inside the porous catalyst and temperature differences between the fluid phase and catalyst surface cannot be neglected. Depending on the physical properties of the fluid and the solid catalyst, important temperature gradients may occur. The relative importance of internal to external temperature profiles can be estimated based on the relationships presented in Sections 2.6.1.2 and 2.6.2.2. According to Equation 2.158 the temperature difference between bulk and outer pellet surface is ... [Pg.82]

Temperature control. Let us now consider temperature control of the reactor. In the first instance, adiabatic operation of the reactor should be considered, since this leads to the simplest and cheapest reactor design. If adiabatic operation produces an unacceptable rise in temperature for exothermic reactions or an unacceptable fall in temperature for endothermic reactions, this can be dealt with in a number of ways ... [Pg.42]

This is an endothermic reaction accompanied by an increase in the number of moles. High conversion is favored by high temperature and low pressure. The reduction in pressure is achieved in practice by the use of superheated steam as a diluent and by operating the reactor below atmospheric pressure. The steam in this case fulfills a dual purpose by also providing heat for the reaction. [Pg.44]

Reaction temperature. For endothermic reactions. Fig. 2.9c shows that the temperature should be set as high as possible consistent with materials-of-construction limitations, catalyst life, and safety. For exothermic reactions, the ideal temperature is continuously decreasing as conversion increases (see Fig. 2.9c). [Pg.277]

Adiabatic operation. If adiabatic operation leads to an acceptable temperature rise for exothermic reactors or an acceptable fall for endothermic reactors, then this is the option normally chosen. If this is the case, then the feed stream to the reactor requires heating and the efiluent stream requires cooling. The heat integration characteristics are thus a cold stream (the reactor feed) and a hot stream (the reactor efiluent). The heat of reaction appears as elevated temperature of the efiluent stream in the case of exothermic reaction or reduced temperature in the case of endothermic reaction. [Pg.325]

Thermal decomposition of spent acids, eg, sulfuric acid, is required as an intermediate step at temperatures sufficientiy high to completely consume the organic contaminants by combustion temperatures above 1000°C are required. Concentrated acid can be made from the sulfur oxides. Spent acid is sprayed into a vertical combustion chamber, where the energy required to heat and vaporize the feed and support these endothermic reactions is suppHed by complete combustion of fuel oil plus added sulfur, if further acid production is desired. High feed rates of up to 30 t/d of uniform spent acid droplets are attained with a single rotary atomizer and decomposition rates of ca 400 t/d are possible (98). [Pg.525]

Spent acid burning is actually a misnomer, for such acids are decomposed to SO2 and H2O at high temperatures in an endothermic reaction. Excess water in the acid is also vaporized. Acid decomposition and water vaporization require considerable heat. Any organic compounds present in the spent acid oxidize to produce some of the required heat. To supply the additional heat required, auxiUary fuels, eg, oil or gas, must be burned. When available, sulfur and H2S are excellent auxiUary fuels. [Pg.184]

For an endothermic reaction AH/ is positive for an exothermic reaction it is negative. The temperature dependence of AH/ is given by dAHf... [Pg.543]

Uijferential Scanning Calorimetry (DSC) Sample and inert reference materials are heated in such a way that the temperatures are always equal. If an exothermic reaction occurs in the sample, the sample heater requires less energy than the reference heater to maintain equal temperatures. If an endothermic reaction occurs, the sample heater requires more energy input than the reference heater. [Pg.2312]

Fired reactors contain tubes or coils in which an endothermic reaction within a stream of reac tants occurs. Examples include steam/ hydrocarbon reformers, catalvst-filled tubes in a combustion chamber pyrolyzers, coils in which alkanes (from ethane to gas oil) are cracked to olefins in both types of reac tor the temperature is maintained up to 1172 K (1650°F). [Pg.2402]

When a gas reacts with a solid, heat will be transfened from the solid to the gas when the reaction is exothermic, and from gas to solid during an endothermic reaction. The energy which is generated will be distributed between the gas and solid phases according to the temperature difference between the two phases, and their respective thermal conductivities. If the surface temperature of the solid is T2 at any given instant, and that of the bulk of the gas phase is Ti, the rate of convective heat transfer from the solid to the gas may be represented by the equation... [Pg.277]

Temperature gradient normal to flow. In exothermic reactions, the heat generation rate is q=(-AHr)r. This must be removed to maintain steady-state. For endothermic reactions this much heat must be added. Here the equations deal with exothermic reactions as examples. A criterion can be derived for the temperature difference needed for heat transfer from the catalyst particles to the reacting, flowing fluid. For this, inside heat balance can be measured (Berty 1974) directly, with Pt resistance thermometers. Since this is expensive and complicated, here again the heat generation rate is calculated from the rate of reaction that is derived from the outside material balance, and multiplied by the heat of reaction. [Pg.77]

In general, for basic petrochemicals that are not much more expensive than fuel (energy) itself, the energy recovery or use is important. Therefore, exothermic reactions should be executed at the highest temperature and endothermic reaction at the lowest, within the range that the reaction permits. In addition, reactors should not be optimized only for their own performance, but also for the optimum economy of the full synthesis loop or the full technology. [Pg.164]

The two-phase model is used mostly to check very exothermic or endothermic reactions, to calculate the temperature difference between catalyst and gas at extreme conditions, or when accounting for changes in both phases is needed. This model was applied to the two-phase counter-... [Pg.165]

This is an endothermic reaction in which a volume increase accompanies dehydrogenation. The reaction is therefore favoured by operation at reduced pressure. In practice steam is passed through with the ethylbenzene in order to reduce the partial pressure of the latter rather than carrying out a high-temperature reaction under partial vacuum. By the use of selected catalysts such as magnesium oxide and iron oxide a conversion of 35-40% per pass with ultimate yields of 90-92% may be obtained. [Pg.428]


See other pages where Endothermic reactions, temperature is mentioned: [Pg.14]    [Pg.14]    [Pg.41]    [Pg.42]    [Pg.101]    [Pg.328]    [Pg.67]    [Pg.79]    [Pg.185]    [Pg.5]    [Pg.6]    [Pg.470]    [Pg.207]    [Pg.348]    [Pg.342]    [Pg.508]    [Pg.481]    [Pg.178]    [Pg.170]    [Pg.749]    [Pg.2312]    [Pg.2369]    [Pg.132]    [Pg.37]    [Pg.174]    [Pg.824]    [Pg.29]    [Pg.105]    [Pg.245]    [Pg.252]    [Pg.221]    [Pg.175]   


SEARCH



Endothermal reaction

Endothermic reaction

Endothermic reactions temperature dependence

Endothermic reactions, temperature gradients

Endothermicities

Endothermicity

Endotherms

Reactor temperature endothermic reactions

© 2024 chempedia.info