Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Endoplasmic reticulum, formation

CH2SH + 1/2 O2 -CH2-S-S-CH2 + H2O This reaction requires an oxidative environment, and such disulfide bridges are usually not found in intracellular proteins, which spend their lifetime in an essentially reductive environment. Disulfide bridges do, however, occur quite frequently among extracellular proteins that are secreted from cells, and in eucaryotes, formation of these bridges occurs within the lumen of the endoplasmic reticulum, the first compartment of the secretory pathway. [Pg.5]

Collagen chains are synthesized as longer precursors, called procollagens, with globular extensions—propeptides of about 200 residues—at both ends. These procollagen polypeptide chains are transported into the lumen of the rough endoplasmic reticulum where they undergo hydroxylation and other chemical modifications before they are assembled into triple chain molecules. The terminal propeptides are essential for proper formation of triple... [Pg.284]

Organisms differ with respect to formation, processing, and utilization of polyunsaturated fatty acids. E. coli, for example, does not have any polyunsaturated fatty acids. Eukaryotes do synthesize a variety of polyunsaturated fatty acids, certain organisms more than others. For example, plants manufacture double bonds between the A and the methyl end of the chain, but mammals cannot. Plants readily desaturate oleic acid at the 12-position (to give linoleic acid) or at both the 12- and 15-positions (producing linolenic acid). Mammals require polyunsaturated fatty acids, but must acquire them in their diet. As such, they are referred to as essential fatty acids. On the other hand, mammals can introduce double bonds between the double bond at the 8- or 9-posi-tion and the carboxyl group. Enzyme complexes in the endoplasmic reticulum desaturate the 5-position, provided a double bond exists at the 8-position, and form a double bond at the 6-position if one already exists at the 9-position. Thus, oleate can be unsaturated at the 6,7-position to give an 18 2 d5-A ,A fatty acid. [Pg.816]

Inositol 1,4,5-trisphosphate (IP3) receptors are intracellular cation channels. They are expressed in most cells and predominantly within the membranes of the endoplasmic reticulum. They mediate release of Ca2+ from intracellular stores by the many receptors that stimulate IP3 formation. [Pg.661]

Figure 2. Reporting of cytosolic free calcium levels by indo-1. Increases in cytosolic calcium, due either to entry of extracellular calcium via calcium channels or to release of intracellular calcium sequestered in organelles such as smooth endoplasmic reticulum, results in formation of the indo-l-calcium complex. Fluorescence intensity at 400 nm (excitation at 340 nm) is proportional to the concentration of this complex the dissociation constant for this complex is about 250 nff (24), making this probe useful for detecting calcium activities in the range of 25 to 2500 nJ. ... Figure 2. Reporting of cytosolic free calcium levels by indo-1. Increases in cytosolic calcium, due either to entry of extracellular calcium via calcium channels or to release of intracellular calcium sequestered in organelles such as smooth endoplasmic reticulum, results in formation of the indo-l-calcium complex. Fluorescence intensity at 400 nm (excitation at 340 nm) is proportional to the concentration of this complex the dissociation constant for this complex is about 250 nff (24), making this probe useful for detecting calcium activities in the range of 25 to 2500 nJ. ...
Pathways are compartmentalized within the cell. Glycolysis, glycogenesis, glycogenolysis, the pentose phosphate pathway, and fipogenesis occur in the cytosol. The mitochondrion contains the enzymes of the citric acid cycle, P-oxidation of fatty acids, and of oxidative phosphorylation. The endoplasmic reticulum also contains the enzymes for many other processes, including protein synthesis, glycerofipid formation, and dmg metabolism. [Pg.129]

Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining. Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining.
Step 5—Formation of Cholesterol The formation of cholesterol from lanosterol takes place in the membranes of the endoplasmic reticulum and involves changes in the steroid nucleus and side chain (Figure 26-3). The methyl groups on C,4 and C4 are removed to form 14-desmethyl lanosterol and then zymosterol. The double bond at 03—C9 is subsequently moved to Cj-Cg in two steps, forming desmosterol. Finally, the double bond of the side chain is reduced, producing cholesterol. The exact order in which the steps described actually take place is not known with certainty. [Pg.220]

The synthesis of the core proteins occurs in the endoplasmic reticulum, and formation of at least some of the above linkages also occurs there. Most of the later steps in the biosynthesis of GAG chains and their subsequent modifications occur in the Golgi apparatus. [Pg.543]

The subcellular location of PG was studied in cells disrupted by osmotic lysis through formation and disruption of sphaeroplasts from self-induced anaerobically-grown cells. A discontinuous sucrose-density gradient produced four bands labelled I, II, III and IV. Band I included many vesicles and a peak of alkaline phosphatase activity (a vacuolar marker in yeasts), NADPH cytochrome c oxidoreductase activity, an endoplasmic reticulum marker, and... [Pg.864]

Braakman, I., Helenius, J., and Helenius, A. (1992). Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11, 1717—1722. [Pg.95]

Fluorescent stains such as DAPI and ethidium bromide bind to DNA (sometimes even mitochondrial DNA) and have many uses, including location of nuclei and rapid detection of microorganisms or virus formation (22). The lipophilic stain DiOC(6) can be used to stain mitochondria and endoplasmic reticulum in living cells (23,24), and is also a potential-sensitive stain. [Pg.72]

Quader H. Formation and disintegration of cistemae of the endoplasmic reticulum visuahsed in hve cells by conventional fluorescence and confocal laser scanning microscopy evidence for the involvement of Ca2+ and the cytoskeleton. Protoplasma 1990 155 166-175. [Pg.89]

Figure 1 The mode of action for bacterial AB-type exotoxins. AB-toxins are enzymes that modify specific substrate molecules in the cytosol of eukaryotic cells. Besides the enzyme domain (A-domain), AB-toxins have a binding/translocation domain (B-domain) that specifically interacts with a cell-surface receptor and facilitates internalization of the toxin into cellular transport vesicles, such as endosomes. In many cases, the B-domain mediates translocation of the A-domain into the cytosol by pore formation in cellular membranes. By following receptor-mediated endocytosis, AB-type toxins exploit normal vesicle traffic pathways into cells. One type of toxin escapes from early acidified endosomes (EE) into the cytosol, thus they are referred to as short-trip-toxins . In contrast, the long-trip-toxins take a retrograde route from early endosomes (EE) through late endosomes (LE), trans-Golgi network (TGN), and Golgi apparatus into the endoplasmic reticulum (ER) from where the A-domains translocate into the cytosol to modify specific substrates. Figure 1 The mode of action for bacterial AB-type exotoxins. AB-toxins are enzymes that modify specific substrate molecules in the cytosol of eukaryotic cells. Besides the enzyme domain (A-domain), AB-toxins have a binding/translocation domain (B-domain) that specifically interacts with a cell-surface receptor and facilitates internalization of the toxin into cellular transport vesicles, such as endosomes. In many cases, the B-domain mediates translocation of the A-domain into the cytosol by pore formation in cellular membranes. By following receptor-mediated endocytosis, AB-type toxins exploit normal vesicle traffic pathways into cells. One type of toxin escapes from early acidified endosomes (EE) into the cytosol, thus they are referred to as short-trip-toxins . In contrast, the long-trip-toxins take a retrograde route from early endosomes (EE) through late endosomes (LE), trans-Golgi network (TGN), and Golgi apparatus into the endoplasmic reticulum (ER) from where the A-domains translocate into the cytosol to modify specific substrates.

See other pages where Endoplasmic reticulum, formation is mentioned: [Pg.109]    [Pg.151]    [Pg.194]    [Pg.781]    [Pg.473]    [Pg.1141]    [Pg.16]    [Pg.184]    [Pg.51]    [Pg.180]    [Pg.449]    [Pg.590]    [Pg.25]    [Pg.142]    [Pg.53]    [Pg.185]    [Pg.126]    [Pg.284]    [Pg.302]    [Pg.387]    [Pg.28]    [Pg.82]    [Pg.143]    [Pg.226]    [Pg.202]    [Pg.348]    [Pg.578]    [Pg.603]    [Pg.94]    [Pg.72]    [Pg.98]    [Pg.24]    [Pg.158]    [Pg.414]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Endoplasmic reticulum

Endoplasmic reticulum protein body formation

© 2024 chempedia.info