Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselectivity nitrone cycloadditions, catalyzed reactions

Accordingly, cyclic nitronates can be a useful synthetic equivalent of functionalized nitrile oxides, while reaction examples are quite limited. Thus, 2-isoxazoline N-oxide and 5,6-dihydro-4H-l,2-oxazine N-oxide, as five- and six-membered cyclic nitronates, were generated in-situ by dehydroiodination of 3-iodo-l-nitropropane and 4-iodo-l-nitrobutane with triethylamine and trapped with monosubstituted alkenes to give 5-substituted 3-(2-hydroxyethyl)isoxazolines and 2-phenylperhydro-l,2-oxazino[2,3-fe]isoxazole, respectively (Scheme 7.26) [72b]. Upon treatment with a catalytic amount of trifluoroacetic acid, the perhydro-l,2-oxazino[2,3-fe]isoxazole was quantitatively converted into the corresponding 2-isoxazoline. Since a method for catalyzed enantioselective nitrone cycloadditions was established and cyclic nitronates should behave like cyclic nitrones in reactivity, there would be a good chance to attain catalyzed enantioselective formation of 2-isoxazolines via nitronate cycloadditions. [Pg.272]

Evans and coworkers reported Ce(IV)-PyBOX catalyzed highly enantioselective nitrone cycloaddition by employing a,P-unsaturated 2-acyl imidazoles. Five mole percent of Ce(OTf)4/Ph-PyBOX promoted the reaction under mild conditions (0°C, EtOAc), giving products in up to 99% yield, 97% ee, and endojcxo =... [Pg.137]

In the nitrone cycloaddition reactions catalyzed by the l ,J -DBFOX/Ph transition metal complexes also, the diastereo- and enantioselectivities were found to depend upon the presence of MS 4 A [71]. Thus, both the selectivities were much lowered in the iron(II) or nickel(II) complex-catalyzed reactions without MS 4 A,... [Pg.270]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Nitrones are the most widely studied of the 1,3-dipoles in the field of catalyzed enantioselective 1,3-dipolar cycloaddition reactions. Effective catalysis using a variety of chiral Lewis acid catalysts has been reported for the nitrone cycloaddition... [Pg.794]

The development and application of catalytic enantioselective 1,3-dipolar cycloadditions is a relatively new area. Compared to the broad application of asymmetric catalysis in carbo- and hetero-Diels-Alder reactions (337,338), which has evolved since the mid-1980s, the use of enantioselective metal catalysts in asymmetric 1,3-dipolar cycloadditions remained almost unexplored until 1993 (5). In particular, the asymmetric metal-catalyzed reactions of nitrones with alkenes has received considerable attention during the past 5 years. [Pg.864]

Nitrone cycloaddition reactions promoted by dichlorotitanium TADDOLate can be improved by using A(-(2-alkenyl)succinimides as the dipolarophiles. Regioselective and enantioselective formation of cyclopentenecarboxylic esters is observed using 8 to catalyze the [3+2]cycloaddition of 2,3-butadienoates with electron-deficient alkenes. ... [Pg.89]

An enantioselective 1,3-dipolar cycloaddition of nitrones 187 with ethyl vinyl ether 194 catalyzed by Brpnsted acid catalyst 195 was reported by Yamamoto and co-workers. Scheme 3.63 [80]. Only 5 mol% of this air-stable catalyst was used, and the reactions were completed within 1 h. The endo-selectivity of this cycloaddition is different to the previously reported cjto-selectivity of the aluminum-catalyzed reaction (Lewis acid catalysis). [Pg.224]

Kanemasa e t al. had found that Ni( 11) and F e (11) chiral complexes derived from 4,6-dibenzofurandiyl-2,2 -bis(4-phenyloxazoline)-Ph ligand act as chiral Lewis acids to make isoxazolidines through nitrone cycloadditions reactions. Strong binding of nitrones to catalysts is a serious problem in the Lewis acid catalyzed nitrone cycloadditions, and therefore, bidentate dipolarophile such as 3-(2-alkenoyl)-2-oxazolidinones have been mostly used to protect the tight coordination of acceptors to the catalysts. Recently, they reported that Ni(II), Zn(II), Mg(II), and Co(II) complexes with (R,R)-DBFOX-Ph ligand catalyzed enantioselective nitrone reactions to a variety of... [Pg.346]

In addition to the body of work dedicated to application of chiral Cu(II) catalysts in enantioselective Diels-Alder and hetero Diels-Alder reaction, a number of chiral Cu(II) catalysts have been applied to/developed for alternate cycloaddition methodologies. The majority of examples in this area pertain to 1,3-dipolar cycloadditions of nitrones and azomethine ylides. However, in recent years example of enantioselective Cu(II)-catalyzed [2 + 2) and [4 + 3) cycloadditions have been reported. [Pg.428]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

In 1997 the application of two different chiral ytterbium catalysts, 55 and 56 for the 1,3-dipolar cycloaddition reaction was reported almost simultaneously by two independent research groups [82, 83], In both works it was observed that the achiral Yb(OTf)3 and Sc(OTf)3 salts catalyze the 1,3-dipolar cycloaddition between nitrones 1 and alkenoyloxazolidinones 19 with endo selectivity. In the first study 20 mol% of the Yb(OTf)2-pyridine-bisoxazoline complex 55 was applied as the catalyst for reactions of a number of derivatives of 1 and 19. The reactions led to endo-selective 1,3-dipolar cycloadditions giving products with enantioselectivities of up to 73% ee (Scheme 6.38) [82]. In the other report Kobayashi et al. described a... [Pg.239]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Kobayashi and co-workers reported similar enantioselectivity switch in the bi-nol-yterrbium(III) triflate complex-catalyzed cycloaddition reactions [69] between N-benzylidenebenzylamine N-oxide and 3-crotonoyl-2-oxazolidinone [70]. The reaction in the presence of MS 4 A showed an exclusively high enantioselectivity of 96% ee, while that in the absence of MS 4 A (-50% ee) or in the presence of pyridine N-oxide (-83% ee) had the opposite enantioselectivity (Scheme 7.24). This chirality switch happens generally for the combination of a wide variety of nitrones and dipolarophiles. [Pg.270]

Scheme 6.7 shows some other examples of enantioselective catalysts. Entry 1 illustrates the use of a Co(III) complex, with the chirality derived from the diamine ligand. Entry 2 is a silver-catalyzed cycloaddition involving generation of an azome-thine ylide. The ferrocenylphosphine groups provide a chiral environment by coordination of the catalytic Ag+ ion. Entries 3 and 4 show typical Lewis acid catalysts in reactions in which nitrones are the electrophilic component. [Pg.538]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]


See other pages where Enantioselectivity nitrone cycloadditions, catalyzed reactions is mentioned: [Pg.269]    [Pg.34]    [Pg.804]    [Pg.44]    [Pg.651]    [Pg.239]    [Pg.270]    [Pg.274]    [Pg.277]    [Pg.306]    [Pg.358]    [Pg.868]    [Pg.870]    [Pg.873]    [Pg.881]    [Pg.714]    [Pg.716]    [Pg.719]    [Pg.727]    [Pg.306]    [Pg.372]    [Pg.95]    [Pg.1094]    [Pg.1095]    [Pg.1094]    [Pg.212]    [Pg.230]    [Pg.273]    [Pg.285]    [Pg.257]    [Pg.174]   
See also in sourсe #XX -- [ Pg.804 ]




SEARCH



Cycloaddition enantioselective

Cycloaddition reaction catalyzed

Enantioselective Cycloaddition Reactions

Enantioselective reaction

Enantioselectivity 2+2] cycloadditions

Enantioselectivity catalyzed reactions

Nitronates cycloadditions

Nitrone catalyzed

Nitrone enantioselective

Nitrone reactions

Nitrones cycloaddition

Nitrones, cycloaddition reactions

Nitrones, cycloadditions

Nitrones, reactions

© 2024 chempedia.info