Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselection asymmetric catalysis

Key words ONIOM, hydrogenation, enantioselectivity, asymmetric catalysis, DFT, reaction mechanism, chiral phosphine, ab initio, valence bond, oxidative addition, migratory insertion, reductive elimination. [Pg.107]

Enantioselective (asymmetric) catalysis operates almost always with metal centers being the reactive sites, determining the stereochemical course of the reaction. Although considerable progress has been made in the design of catalysts of this type... [Pg.294]

Catalytic, enantioselective cyclopropanation enjoys the unique distinction of being the first example of asymmetric catalysis with a transition metal complex. The landmark 1966 report by Nozaki et al. [1] of decomposition of ethyl diazoacetate 3 with a chiral copper (II) salicylamine complex 1 (Scheme 3.1) in the presence of styrene gave birth to a field of endeavor which still today represents one of the major enterprises in chemistry. In view of the enormous growth in the field of asymmetric catalysis over the past four decades, it is somewhat ironic that significant advances in cyclopropanation have only emerged in the past ten years. [Pg.85]

The most useful of the insertion processes is the intramolecular reactions that occur with high selectivity for the formation of five-membered ring products. The electrophilic nature of the process is suggested by C-H bond reactivity in competitive experiments (3°>20 >1°) [76, 77]. Asymmetric catalysis with Rh2(MPPIM)4 has been used to prepare a wide variety of lignans that include (-)-enterolactone (3) [8], as well as (R)-(-)-baclofen (2) [7],2-deoxyxylolactone (31) [80,81],and (S)-(+)-imperanane (32) [82].Enantioselectivities are 91-96%... [Pg.214]

Optically active polymers are potentially very useful in areas such as asymmetric catalysis, nonlinear optics, polarized photo and electroluminescence, and enantioselective separation and sensing.26 Transition metal coupling polymerization has also been applied to the synthesis of these polymers.27 For example, from the Ni(II)-catalyzed polymerization, a regioregular head-to-tail polymer 32 was obtained (Scheme 9.17).28 This polymer is optically active because of the optically active chiral side chains. [Pg.473]

Significant advance in the field of asymmetric catalysis was also achieved with the preparation of l,2-bis(phospholano)benzene (DuPHOS 4) and its confor-mationally flexible derivative (l,2-bis(phospholano)ethane, known as BPE) by Burk et al. [59]. Two main distinctive features embodied by these Hgands, as compared to other known chiral diphosphine ligands, are the electron-rich character of the phosphorus atoms on the one hand and the pseudo-chirality at phosphorus atoms, on the other. These properties are responsible for both the high activity of the corresponding metal complex and an enantioselection indepen-... [Pg.8]

As mentioned in Sect. 2.2, phosphine oxides are air-stable compounds, making their use in the field of asymmetric catalysis convenient. Moreover, they present electronic properties very different from the corresponding free phosphines and thus may be employed in different types of enantioselective reactions, m-Chloroperbenzoic acid (m-CPBA) has been showed to be a powerful reagent for the stereospecific oxidation of enantiomerically pure P-chirogenic phos-phine-boranes [98], affording R,R)-97 from Ad-BisP 6 (Scheme 18) [99]. The synthesis of R,R)-98 and (S,S)-99, which possess a f-Bu substituent, differs from the precedent in that deboranation precedes oxidation with hydrogen peroxide to yield the corresponding enantiomerically pure diphosphine oxides (Scheme 18) [99]. [Pg.25]

Abstract While the use of stoichiometric amounts of sparteine and related ligands in various asymmetric reactions often lead to highly enantioselective transformations, there have been far fewer applications of sparteine to asymmetric catalysis. The aim of this review is to highlight recent advances in the field of asymmetric transformations that use sparteine as chiral auxiliary, emphasizing the use of substoichiometric or catalytic amounts of this ligand. [Pg.59]

The complex Pd-(-)-sparteine was also used as catalyst in an important reaction. Two groups have simultaneously and independently reported a closely related aerobic oxidative kinetic resolution of secondary alcohols. The oxidation of secondary alcohols is one of the most common and well-studied reactions in chemistry. Although excellent catalytic enantioselective methods exist for a variety of oxidation processes, such as epoxidation, dihydroxy-lation, and aziridination, there are relatively few catalytic enantioselective examples of alcohol oxidation. The two research teams were interested in the metal-catalyzed aerobic oxidation of alcohols to aldehydes and ketones and became involved in extending the scopes of these oxidations to asymmetric catalysis. [Pg.84]

Chuzel O, Riant O (2005) Sparteine as a Chiral Ligand for Asymmetric Catalysis. 15 59-92 Clayden J (2003) Enantioselective Synthesis by Lithiation to Generate Planar or Axial Chirality. 5 251-286... [Pg.289]

There had been doubts about the utility of palladacycles in asymmetric catalysis, raised by the failure to achieve enantioselectivity as a result of a slow release of low ligated Pd(0) (naked Pd) [54]. However, recent success of several planar chiral palladacycles in highly enantioselective aza-Claisen reactions and in a number of other applications proves that the coordination shell of the Pd(II) species is not necessarily destroyed during the catalytic action. [Pg.153]

The hydrogenation of a cinnamate was also investigated as a first step to determine kinetics and finally to come to a quantitative determination of kinetic models and parameters in asymmetric catalysis [64]. The enantiomeric excess of enantioselective catalytic hydrogenations is known to be dependent on pressure, chiral additives and mixing. Such dependences are often due to kinetics, demanding appropriate studies. [Pg.631]

In contrast to the large number of chiral pyridine derivatives used as ligands of metal complexes in asymmetric catalysis, only a few examples of chiral sulfur-containing pyridine ligands have so far been reported, such as pyridine thioethers derived from ( + )-camphor depicted in Scheme 1.33, which were assessed in the test reaction providing enantioselectivities of up to 76% ee. The related 2,2 -bipyridine thioethers were also prepared but showed a lower stereodilferentiating capability in the test reaction. [Pg.32]

Whereas the mono- and the S/S-dithioether moieties have been used to date, the 1,3-dithianyl motif was used for the first time in 2005 by Ricci et al. as a new hybrid ligand in asymmetric catalysis. Hence, a series of new chiral oxazoline-1,3-dithianes have been successfully applied to the copper-catalysed conjugate addition of ZnEt2 to enones (Scheme 2.16). The expected products were obtained in almost quantitative yields and enantioselectivities of up to 69% ee. [Pg.87]

A review8 with more than 186 references discusses the synthesis of Rh and Pd complexes with optically active P,N-bidentate ligands and their applications in homogeneous asymmetric catalysis. The effect of the nature of the P,N-bidentate compounds on the structure of the metal complexes and on enantioselectivity in catalysis was examined. Allylic substitution, cross-coup-ling, hydroboration and hydrosilylation catalyzed by Rh or Pd complexes with optically active P,N-bidentate ligands are considered. [Pg.557]


See other pages where Enantioselection asymmetric catalysis is mentioned: [Pg.126]    [Pg.212]    [Pg.348]    [Pg.229]    [Pg.247]    [Pg.23]    [Pg.56]    [Pg.37]    [Pg.192]    [Pg.91]    [Pg.134]    [Pg.191]    [Pg.192]    [Pg.232]    [Pg.265]    [Pg.309]    [Pg.113]    [Pg.2]    [Pg.14]    [Pg.16]    [Pg.63]    [Pg.75]    [Pg.92]    [Pg.98]    [Pg.141]    [Pg.157]    [Pg.270]    [Pg.276]    [Pg.301]    [Pg.303]    [Pg.368]    [Pg.369]    [Pg.369]    [Pg.370]    [Pg.212]   
See also in sourсe #XX -- [ Pg.220 , Pg.221 , Pg.222 ]




SEARCH



Asymmetric catalysis

Asymmetric enantioselectivity

Catalysis, asymmetric enantioselective

Catalysis, asymmetric enantioselective

Enantioselective catalysis

Homogeneous asymmetric catalysis enantioselective reactions

© 2024 chempedia.info