Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomers chiral recognition

The term chiral recognition refers to a process m which some chiral receptor or reagent interacts selectively with one of the enantiomers of a chiral molecule Very high levels of chiral recognition are common m biological processes (—) Nicotine for exam pie IS much more toxic than (+) nicotine and (+) adrenaline is more active than (—) adrenaline m constricting blood vessels (—) Thyroxine an ammo acid of the thyroid gland that speeds up metabolism is one of the most widely used of all prescription... [Pg.295]

Appllca.tlons. The first widely appHcable Ic separation of enantiomeric metallocene compounds was demonstrated on P-CD bonded-phase columns. Thirteen enantiomeric derivatives of ferrocene, mthenocene, and osmocene were resolved (7). Retention data for several of these compounds are listed in Table 2, and Figure 2a shows the Ic separation of three metallocene enantiomeric pairs. P-Cyclodextrin bonded phases were used to resolve several racemic and diastereomeric 2,2-binaphthyldiyl crown ethers (9). These compounds do not contain a chiral carbon but stiU exist as enantiomers because of the staggered position of adjacent naphthyl rings, and a high degree of chiral recognition was attained for most of these compounds (9). [Pg.97]

This observation is important in the study of the chiral recognition mechanism in this system. This may be a practical matter when determining the trace amount of one enantiomer in the presence of its dominant antipode. The smaller peak is always desired to be eluted first for best quantitation. [Pg.50]

Another important issue that must be considered in the development of CSPs for preparative separations is the solubility of enantiomers in the mobile phase. For example, the mixtures of hexane and polar solvents such as tetrahydrofuran, ethyl acetate, and 2-propanol typically used for normal-phase HPLC may not dissolve enough compound to overload the column. Since the selectivity of chiral recognition is strongly mobile phase-dependent, the development and optimization of the selector must be carried out in such a solvent that is well suited for the analytes. In contrast to analytical separations, separations on process scale do not require selectivity for a broad variety of racemates, since the unit often separates only a unique mixture of enantiomers. Therefore, a very high key-and-lock type selectivity, well known in the recognition of biosystems, would be most advantageous for the separation of a specific pair of enantiomers in large-scale production. [Pg.61]

Chiral Recognition. The use of chiral hosts to form diastereomeric inclusion compounds was mentioned above. But in some cases it is possible for a host to form an inclusion compound with one enantiomer of a racemic guest, but not the other. This is caUed chiral recognition. One enantiomer fits into the chiral host cavity, the other does not. More often, both diastereomers are formed, but one forms more rapidly than the other, so that if the guest is removed it is already partially resolved (this is a form of kinetic resolution, see category 6). An example is use of the chiral crown ether (53) partially to resolve the racemic amine salt (54). " When an aqueous solution of 54 was... [Pg.152]

The possibility to resolve the two enantiomers of 27a (or 26) by crystalline complexa-tion with optically active 26 (or 27a) is mainly due to differences in topological complementarity between the H-bonded chains of host and guest molecules. In this respect, the spatial relationships which affect optical resolution in the above described coordination-assisted clathrates are similar to those characterizing some optically resolved molecular complexes S4). This should encourage additional applications of the lattice inclusion phenomena to problems of chiral recognition. [Pg.50]

A number of specialised stationary phases have been developed for the separation of chiral compounds. They are known as chiral stationary phases (CSPs) and consist of chiral molecules, usually bonded to microparticulate silica. The mechanism by which such CSPs discriminate between enantiomers (their chiral recognition, or enantioselectivity) is a matter of some debate, but it is known that a number of competing interactions can be involved. Columns packed with CSPs have recently become available commercially. They are some three to five times more expensive than conventional hplc columns, and some types can be used only with a restricted range of mobile phases. Some examples of CSPs are given below ... [Pg.103]

Perhaps the simplest form of chiral recognition is that in which one enantiomer, for example, A, of a chiral object displays a stronger interaction with a particular enantiomer of a second chiral object, for example, B, rather than its mirror image,... [Pg.21]

In another study, the authors reported a comparative study of the enantiomeric resolution of miconazole and the other two chiral drugs by high performance liquid chromatography on various cellulose chiral columns in the normal phase mode [79], The chiral resolution of the three drugs on the columns containing different cellulose derivatives namely Chiralcel OD, OJ, OB, OK, OC, and OE in normal phase mode was described. The mobile phase used was hexane-isopropanol-diethylamine (425 74 1). The flow rates of the mobile phase used were 0.5, 1, and 1.5 mL/min. The values of the separation factor (a) of the resolved enantiomers of econazole, miconazole, and sulconazole on chiral phases were ranged from 1.07 to 2.5 while the values of resolution factors (Rs) varied from 0.17 to 3.9. The chiral recognition mechanisms between the analytes and the chiral selectors are discussed. [Pg.52]

Phinney et al. [Ill] investigated the application of citrus pectins, as chiral selectors, to enantiomer separations in capillary electrophoresis. Successful enantioreso-lution of primaquine and other antimalarials, was achieved by utilizing potassium polypectate as the chiral selector. Changes in pH, chiral additive concentration, and capillary type were studied in relation to chiral resolution. The effect of degree of esterification of pectin materials on chiral recognition was evaluated. [Pg.194]

The chiral recognition ability of a CSP is quantitatively evaluated from the results of chromatographic separation of enantiomers. Figure 3.4 shows a chromatogram of the resolution of benzoin (19) on cellulose tris(3,5-dimethylphenylcarbamate). The (+)-isomer elutes first followed by the (—)-isomer complete baseline separation is achieved. The results of the separation can be expressed by three parameters—capacity factors (k1), separation factor (a), and resolution factor (Rs)—defined as follows ... [Pg.159]


See other pages where Enantiomers chiral recognition is mentioned: [Pg.1056]    [Pg.1555]    [Pg.1056]    [Pg.1555]    [Pg.62]    [Pg.63]    [Pg.63]    [Pg.187]    [Pg.242]    [Pg.98]    [Pg.99]    [Pg.99]    [Pg.296]    [Pg.299]    [Pg.16]    [Pg.24]    [Pg.25]    [Pg.46]    [Pg.83]    [Pg.84]    [Pg.307]    [Pg.309]    [Pg.58]    [Pg.58]    [Pg.455]    [Pg.12]    [Pg.31]    [Pg.39]    [Pg.60]    [Pg.97]    [Pg.98]    [Pg.317]    [Pg.319]    [Pg.21]    [Pg.22]    [Pg.24]    [Pg.48]    [Pg.134]    [Pg.159]   
See also in sourсe #XX -- [ Pg.462 ]




SEARCH



Chiral enantiomers

Chiral recognition

Chiral recognition Enantiomer discrimination

Chiral stationary phases enantiomer recognition

Chirality recognition

Chirality/Chiral enantiomers

Enantiomer recognition

Polymeric chiral selectors, enantiomer recognition

© 2024 chempedia.info