Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion rheological properties

Rheological measurements were carried out to investigate the rheological properties of emulsions stabilized by different fat-water interfaces and the influence of fat droplets on the formation of the protein networks during a process of gelation. [Pg.278]

The most useful parameters commonly measured to assess the effect of stress conditions on emulsions include phase separation, rheological property determination, electrical property measurements, and particle size analysis. [Pg.273]

Rheological Property Determination. The rheology of an emulsion is often an important factor in determining its stability. Any variation in droplet size distribution, degree of flocculation, or phase separation frequently results in viscosity changes. Since most emulsions are non-Newtonian, the cone-plate type device should be used to determine their viscosity rather than the capillary viscometer. [Pg.273]

PE Miner. Emulsion rheology creams and lotions. In D Laba, ed. Rheological Properties of Cosmetics and Toiletries. New York Marcel Deklcer, 1993, pp 313-370. [Pg.285]

The rheological properties of a fluid interface may be characterized by four parameters surface shear viscosity and elasticity, and surface dilational viscosity and elasticity. When polymer monolayers are present at such interfaces, viscoelastic behavior has been observed (1,2), but theoretical progress has been slow. The adsorption of amphiphilic polymers at the interface in liquid emulsions stabilizes the particles mainly through osmotic pressure developed upon close approach. This has become known as steric stabilization (3,4.5). In this paper, the dynamic behavior of amphiphilic, hydrophobically modified hydroxyethyl celluloses (HM-HEC), was studied. In previous studies HM-HEC s were found to greatly reduce liquid/liquid interfacial tensions even at very low polymer concentrations, and were extremely effective emulsifiers for organic liquids in water (6). [Pg.185]

J. Floury, A. Desrumaux, and J. Lardieres Effect of High-Pressure Homogenization on Droplet Size Distributions and Rheological Properties of Model Oil-in-Water Emulsions. hmovat. Food Sci. Emergi. Technol. 1, 127 (2000). [Pg.42]

S. Arditly Eahrication, Stability and Rheological Properties of Sohd-Stabilzed Emulsions. Ph.D thesis, Bordeaux I University (2004). [Pg.142]

T.D. Dimitrova and F. Leal Calderon Rheological Properties of Highly Concentrated Protein-Stabilized Emulsions. Adv. Colloid Interface Sci. 108-109, 49 (2004). [Pg.142]

Perhaps the most important and striking features of high internal phase emulsions are their rheological properties. Their viscosities are high, relative to the bulk liquid phases, and they are characterised by a yield stress, which is the shear stress required to induce flow. At stress values below the yield stress, HIPEs behave as viscoelastic solids above the yield stress, they are shear-thinning liquids, i.e. the viscosity varies inversely with shear rate. In other words, HIPEs (and high gas-fraction foams) behave as non-Newtonian fluids. [Pg.173]

In much of the work on rheology, foams and HIPEs have been considered as analogous. The expressions derived are applicable to both systems, only the actual values are different. Consequently, workers in this area choose to study either emulsions or foams (or both) and so, in this section, the rheological properties of HIPEs and high gas-fraction (or dry ) foams will be discussed jointly. [Pg.173]

Another important rheological property of dry foams and highly concentrated emulsions is G, the shear modulus. Princen and Kiss [57] demonstrated that this property was dependent on < >, the volume fraction of the system. Previously, Stamenovic et al. [58] and, much earlier, Derjaguin and coworker [59], had derived an expression for the shear modulus of foams of volume fraction very close to unity. The value was found to depend on the surface tension of the liquid phase (in foams), for the particular case of (Jja 1. However, Princen demonstrated that the values of G obtained were overestimated by a factor of two. This error was attributed to the model used by Stamenovic and coworker, which failed to maintain the equilibrium condition that three films always meet at angles of 120° during deformation. [Pg.175]

Pons et al. have studied the effects of temperature, volume fraction, oil-to-surfactant ratio and salt concentration of the aqueous phase of w/o HIPEs on a number of rheological properties. The yield stress [10] was found to increase with increasing NaCl concentration, at room temperature. This was attributed to an increase in rigidity of films between adjacent droplets. For salt-free emulsions, the yield stress increases with increasing temperature, due to the increase in interfacial tension. However, for emulsions containing salt, the yield stress more or less reaches a plateau at higher temperatures, after addition of only 1.5% NaCl. [Pg.180]

Anklam et al. [91] have attempted to measure the extensional rheological properties of w/o emulsions and HIPEs, using a nozzle-type viscometer. However, the results showed a dependence on the nozzle size used, and long relaxation times. Experiments on other non-Newtonian fluids indicated that it was not possible to obtain reliable results with this kind of instrument. [Pg.181]

Small-Volume Parenterals Color, clarity of solutions, particulate matter, pH, sterility, endotoxins. Powders for injection solutions include clarity, color, reconstitution time and water content, pH, sterility, endotoxins/pyrogens, and particulate matter. Suspensions for injection should include additional particle size distribution, redispersability, and rheological properties. Emulsion for injection should include phase separation, viscosity, mean size, and distribution of dispersed globules. [Pg.580]

Dickinson, E., Matia-Merino, L. (2002). Effect of sugars on the rheological properties of acid caseinate-stabilized emulsion gels. Food Hydrocolloids, 16, 321-331. [Pg.222]

The term food colloids can be applied to all edible multi-phase systems such as foams, gels, dispersions and emulsions. Therefore, most manufactured foodstuffs can be classified as food colloids, and some natural ones also (notably milk). One of the key features of such systems is that they require the addition of a combination of surface-active molecules and thickeners for control of their texture and shelf-life. To achieve the requirements of consumers and food technologists, various combinations of proteins and polysaccharides are routinely used. The structures formed by these biopolymers in the bulk aqueous phase and at the surface of droplets and bubbles determine the long-term stability and rheological properties of food colloids. These structures are determined by the nature of the various kinds of biopolymer-biopolymer interactions, as well as by the interactions of the biopolymers with other food ingredients such as low-molecular-weight surfactants (emulsifiers). [Pg.415]

Figure H3.1.10 The temperature stability of four emulsions. Emulsions A and B show a high dependence of rheological stability on temperature. Emulsions C and D have rheological properties that are relatively independent of temperature. Figure H3.1.10 The temperature stability of four emulsions. Emulsions A and B show a high dependence of rheological stability on temperature. Emulsions C and D have rheological properties that are relatively independent of temperature.
A similar technique can be used to study the rheological properties of liquid films. Figure 4 shows the formation of a W/O/W emulsion film with two, identical aqueous phases (such as in water-in-oil emulsions) at the tip of the capillary. A pre-requisite of the experiment is that the surface of the capillary must be well wetted by the film phase, i.e., it should be hydrophobic in this case. First, an aqueous drop is formed inside the oil (film liquid) and the aqueous phase is in the bottom of the cuvette. Then, the level of the aqueous phase is slowly increased. As the oil/water interface passes the drop, a cap shaped oil film, bordered by a circular meniscus, covers the drop. This film can be studied in equilibrium and in dynamic conditions, similar to the single interfaces (See above). The technique can be used to study films from oil or aqueous phase which can be sandwiched between identical or different liquid or gas phases. [Pg.4]


See other pages where Emulsion rheological properties is mentioned: [Pg.117]    [Pg.303]    [Pg.22]    [Pg.512]    [Pg.261]    [Pg.45]    [Pg.315]    [Pg.280]    [Pg.281]    [Pg.433]    [Pg.171]    [Pg.194]    [Pg.150]    [Pg.2]    [Pg.5]    [Pg.52]    [Pg.123]    [Pg.131]    [Pg.188]    [Pg.190]    [Pg.224]    [Pg.134]    [Pg.179]    [Pg.97]    [Pg.261]    [Pg.160]    [Pg.234]    [Pg.601]    [Pg.628]    [Pg.2]    [Pg.306]   
See also in sourсe #XX -- [ Pg.3143 ]

See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Emulsion properties

Emulsion rheology

Rheological properties

Rheological properties rheology

Rheology properties

© 2024 chempedia.info