Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.2- Elimination reactions, characteristics

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

The majority of analgesics can be classified as either central or peripheral on the basis of their mode of action. Structural characteristics usually follow the same divisions the former show some relation to the opioids while the latter can be recognized as NSAlD s. The triamino pyridine 17 is an analgesic which does not seem to belong stmcturally to either class. Reaction of substituted pyridine 13 (obtainable from 12 by nitration ) with benzylamine 14 leads to the product from replacement of the methoxyl group (15). The reaction probably proceeds by the addition elimination sequence characteristic of heterocyclic nucleophilic displacements. Reduction of the nitro group with Raney nickel gives triamine 16. Acylation of the product with ethyl chlorofor-mate produces flupirtine (17) [4]. [Pg.102]

The oxazirane structure (12) for kasugamycin was also eliminated by negative reactions characteristic of the oxazirane group (4) and by the observation of no proton corresponding to an oxazirane group in the NMR spectrum of kasugamycin. [Pg.35]

Claisen rearrangement, 1194-1195 dehydration, 622 elimination reactions, 393 oxidation, 625-626 radical reactions, 243-244 characteristics of, 162-164 comparison with laboratory reactions, 162-164 conventions for writing, 162. 190 energy diagram of, 161 reduction, 723-725 reductive animation, 932 substitution reactions, 381-383 Biological reduction, NADH and, 610-611... [Pg.1288]

It is possible to take advantage of the differing characteristics of the periphery and the interior to promote chemical reactions. For example, a dendrimer having a non-polar aliphatic periphery with highly polar inner branches can be used to catalyse unimolecular elimination reactions in tertiary alkyl halides in a non-polar aliphatic solvent. This works because the alkyl halide has some polarity, so become relatively concentrated within the polar branches of the dendrimer. This polar medium favours the formation of polar transition states and intermediates, and allows some free alkene to be formed. This, being nonpolar, is expelled from the polar region, and moves out of the dendrimer and into the non-polar solvent. This is a highly efficient process, and the elimination reaction can be driven to completion with only 0.01 % by mass of a dendrimer in the reaction mixture in the presence of an auxiliary base such as potassium carbonate. [Pg.144]

However, the E2C mechanism has been criticized, and it has been contended that all the experimental results can be explained by the normal E2 mechanism. McLennan suggested that the transition state is that shown as 18. An ion-pair mechanism has also been proposed. Although the actual mechanisms involved may be a matter of controversy, there is no doubt that a class of elimination reactions exists that is characterized by second-order attack by weak bases. " These reactions also have the following general characteristics (1) they are favored by good leaving groups (2) they are favored by polar aprotic solvents (3) the reactivity order is tertiary > secondary > primary, the opposite of the normal E2 order (p. 1319) (4) the elimination is always anti (syn elimination is not found), but in cyclohexyl systems, a diequatorial anti elimination is about as favorable as a diaxial anti elimination (unlike the normal E2 reaction, p. 1302) (5) they follow Zaitsev s rule (see below), where this does not conflict with the requirement for anti elimination. [Pg.1314]

Aldehyde 54 and the hydroxamic acids 55 were generated together in an acid-catalysed elimination reaction (Scheme 7 pathway (ii)). A crossover experiment indicated that esters are formed in a concerted rearrangement concomitant with the likely formation of the hydroxynitrene 57 (Scheme 7 pathway (iii)) while there is no evidence to date for the formation of hydroxynitrene, joint solvolysis of equimolar quantities of /V-acetoxy-/V-butoxy-/>-chlorobenzamide 26e and N- acetoxy-/V-benzyloxybenzamide 27a afforded significant quantities of butyl p-chlorobenzo-ate (36%) and benzyl benzoate (54%) as the only esters. This is an example of a HERON reaction, which has been identified in these laboratories as a characteristic rearrangement of bisheteroatom-substituted amides.32,33,42 43 155 158 Since ester formation was shown to prevail in neutral or low acid concentrations, it could involve the conjugate anion of the hydroxamic acid (vide infra).158... [Pg.67]

As we have seen (Section 4, p. 191) the range of effective molarities associated with ring-closure reactions is very much greater than that characteristic of intramolecular general acid-base catalysis the main classification is therefore in terms of mechanism. By far the largest section (I, Tables A-D) gives EM s for intramolecular nucleophilic reactions. These can be concerted displacements (mostly at tetrahedral carbon), stepwise displacements (mostly addition-elimination reactions at trigonal carbon), or additions, and they have been classified in terms of the nucleophilic and electrophilic centres. [Pg.223]

The second important chain termination reaction characteristic of the catalysis of anionic polymerization of epoxy compounds by the TA consists in the abstraction of the hydrogen atom from the p-carbon atom in the tetraalkylammonium cation by the growing alkoxy anion (P-elimination reaction)I58 164). [Pg.156]

Elimination reactions can also occur when a carbon halogen bond does not completely ionize, but merely becomes polarized. As with the El reactions, E2 mechanisms occur when the attacking group displays its basic characteristics rather than its nucleophilic property. The activated complex for this mechanism contains both the alkyl halide and the alkoxide ion. [Pg.52]

The chromophoric pyridoxal phosphate coenzyme provides a useful spectrophotometric probe of catalytic events and of conformational changes that occur at the pyridoxal phosphate site of the P subunit and of the aiPi complex. Tryptophan synthase belongs to a class of pyridoxal phosphate enzymes that catalyze /3-replacement and / -elimination reactions.3 The reactions proceed through a series of pyridoxal phosphate-substrate intermediates (Fig. 7.6) that have characteristic spectral properties. Steady-state and rapid kinetic studies of the P subunit and of the aiPi complex in solution have demonstrated the formation and disappearance of these intermediates.73-90 Fig. 7.7 illustrates the use of rapid-scanning stopped-flow UV-visible spectroscopy to investigate the effects of single amino acid substitutions in the a subunit on the rate of reactions of L-serine at the active site of the P subunit.89 Formation of enzyme-substrate intermediates has also been observed with the 012P2 complex in the crystalline state.91 ... [Pg.133]

Among the available methods for introducing an unsaturated carbon-carbon bond into organic molecules, selenoxide elimination reaction has been shown to be quite useful because of its simple procedure and its characteristic regioselec-tivity. Jones et al., who discovered the first selenoxide elimination, proposed an intramolecular mechanism entailing a five-membered ring structure to explain its syn nature [11]. This proposition was shown to be correct by Sharpless et al. who applied the method that was utilized by Cram to determine the stereochemistry of elimination in amine oxides [12]. Thus, the oxidation of erythro-selenide afforded only Z-olefin and that of f/zreo-selenide gave only -olefin (Scheme 4). [Pg.206]


See other pages where 1.2- Elimination reactions, characteristics is mentioned: [Pg.145]    [Pg.78]    [Pg.105]    [Pg.385]    [Pg.330]    [Pg.289]    [Pg.1335]    [Pg.391]    [Pg.174]    [Pg.174]    [Pg.626]    [Pg.1450]    [Pg.60]    [Pg.157]    [Pg.2]    [Pg.427]    [Pg.161]    [Pg.161]    [Pg.96]    [Pg.297]    [Pg.123]    [Pg.268]    [Pg.105]    [Pg.230]    [Pg.231]    [Pg.1194]    [Pg.1377]    [Pg.2610]    [Pg.141]   
See also in sourсe #XX -- [ Pg.240 , Pg.241 , Pg.242 , Pg.243 , Pg.244 , Pg.245 , Pg.246 , Pg.247 , Pg.248 , Pg.249 , Pg.250 , Pg.251 ]




SEARCH



Reactions characteristics

© 2024 chempedia.info