Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination-allylation

Alkyl halides possessing / -hydrogens are usually poor substrates for carbonylative cross-coupling due to competitive / -hydride elimination/ Allyl chlorides can be used in carbonylative cross-coupling with allylstannanes/ phenyl-, 3-furyl, or vinylstannanes " to afford allylketones in modest to good yields. Divinylketones can be accessed through the reaction of vinylstannanes with vinyl iodides or vinyl triflates, with the latter requiring the addition of LiCl. Synthetic potential of this method has been proved in the formation of macrocyclic ketone jatrophone. In the reaction of vinyl triflates with tetramethyltin or aryltrimethylstannanes the additional activation by ZnCle is required. [Pg.413]

These processes take place by a mechanism of /3-or a-elimination. Allyl alcohols may be formed in the course of )3- or a-elimination (Eq. 108). [Pg.62]

Palladium(II) acetylacetonate-tribat]rl Eliminations. Allylic esters undergi gives 82% yield of a mixture of a-pinene propargylic formate is defunctionalized w... [Pg.280]

As a related elimination, allyl alkyl carbonates of primary, secondary, allylic, and benzyl alcohols are converted to ketones and aldehydes in MeCN via facile y3-H elimination of jr-allylpalladium alkoxide 537, formed from allyl alkyl carbonate 536 [198], The reaction offers a good method of oxidation of alcohols under neutral conditions without using inorganic oxidants. [Pg.499]

Following the success of the elimination-allylation and propargylation sequences, Madsen and coworkers investigated the corresponding elimination-vinylation reaction [37]. The vinylation, however, cannot be carried out directly under Barbier conditions because vinyl bromide does not insert zinc under the conditions for the reductive elimination preformed divinyl zinc was used instead [51,52], Treatment of iodo furanoside 55 with zinc dust and divinyl zinc in THF gave diene 56 in a good yield (85%) and excellent diastereoseleetivity (10 1) (Scheme 3.18). [Pg.59]

Silyl cyanides react with allylic and propargylic carbonates as well as aryl halides " to give allylic cyanides and allenylcyanides, respectively (Scheme 3-184, 3-185). The allyic substitution reaction proceeds with inversion of stereochemistry, suggesting a r-allyl(cyano)palladium intermediate that reductively eliminates allylic cyanides. [Pg.493]

Two efficient syntheses of strained cyclophanes indicate the synthetic potential of allyl or benzyl sulfide intermediates, in which the combined nucleophilicity and redox activity of the sulfur atom can be used. The dibenzylic sulfides from xylylene dihalides and -dithiols can be methylated with dimethoxycarbenium tetrafiuoroborate (H. Meerwein, 1960 R.F. Borch, 1968, 1969 from trimethyl orthoformate and BFj, 3 4). The sulfonium salts are deprotonated and rearrange to methyl sulfides (Stevens rearrangement). Repeated methylation and Hofmann elimination yields double bonds (R.H. Mitchell, 1974). [Pg.38]

In all cases examined the ( )-isomers of the allylic alcohols reacted satisfactorily in the asymmetric epoxidation step, whereas the epoxidations of the (Z)-isomers were intolerably slow or nonstereoselective. The eryfhro-isomers obtained from the ( )-allylic alcohols may, however, be epimerized in 95% yield to the more stable tlireo-isomers by treatment of the acetonides with potassium carbonate (6a). The competitive -elimination is suppressed by the acetonide protecting group because it maintains orthogonality between the enolate 7i-system and the 8-alkoxy group (cf the Baldwin rules, p. 316). [Pg.265]

The 7, i5-unsaturated alcohol 99 is cyclized to 2-vinyl-5-phenyltetrahydro-furan (100) by exo cyclization in aqueous alcohol[124]. On the other hand, the dihydropyran 101 is formed by endo cyclization from a 7, (5-unsaturated alcohol substituted by two methyl groups at the i5-position. The direction of elimination of /3-hydrogen to give either enol ethers or allylic ethers can be controlled by using DMSO as a solvent and utilized in the synthesis of the tetronomycin precursor 102[125], The oxidation of the optically active 3-alkene-l,2-diol 103 affords the 2,5-dihydrofuran 104 in high ee. It should be noted that /3-OH is eliminated rather than /3-H at the end of the reac-tion[126]. [Pg.35]

The intermediate 190 of the intramolecular aminopalladation of an allenic bond with jV-tosylcarbamate undergoes insertion of allylic chloride. Subsequent elimination of PdCl2 occurs to afford the 1,4-diene system 191. The regeneration of Pd(II) species makes the reaction catalytic without using a reoxidant[190]. [Pg.47]

Interestingly, some nucleophiles attack the central carbon of the 7r-allyl system to form a palladacyclobutane 316 and its reductive elimination gives... [Pg.63]

Addition of several organomercury compounds (methyl, aryl, and benzyl) to conjugated dienes in the presence of Pd(II) salts generates the ir-allylpalladium complex 422, which is subjected to further transformations. A secondary amine reacts to give the tertiary allylic amine 423 in a modest yield along with diene 424 and reduced product 425[382,383]. Even the unconjugated diene 426 is converted into the 7r-allyllic palladium complex 427 by the reaction of PhHgCI via the elimination and reverse readdition of H—Pd—Cl[383]. [Pg.82]

Stereochemical features in the oxidative addition and the elimination of /3-hydrogen of cyclic and acyclic alkenes are different. The insertion (palladation) is syn addition. The syn addition (carbopalladation) of R—Pd—X to an acyclic alkene is followed by the syn elimination of 3-hydrogen to give the trans-a ksne 6, because free rotation of 5 is possible with the acyclic alkene. On the other hand, no rotation of the intermediate 7 is possible with a cyclic alkene and the syn elimination of /3-hydrogen gives the allylic compound 8 rather than a substituted alkene. [Pg.128]

When allylic alcohols are used as an alkene component in the reaction with aryl halides, elimination of /3-hydrogen takes place from the oxygen-bearing carbon, and aldehydes or ketones are obtained, rather than y-arylated allylic alcohoIs[87,88]. The reaction of allyl alcohol with bromobenzene affords dihydrocinnamaldehyde. The reaction of methallyl alcohol (96) with aryl halides is a good synthetic method for dihydro-2-methylcinnamaldehyde (97). [Pg.142]

Aryl or alkenyl halides attack the central carbon of the allene system in the 2,3-butadien-l-ol 120 to form the 7r-allyl intermediate 121, which undergoes elimination reaction to afford the o,/3-unsaturated ketone 122 or aldehyde. The reaction proceeds smoothly in DMSO using dppe as a ligandflOl]. [Pg.145]

The unconjugated alkenyl oxirane 133 reacts with aryl halides to afford the arylated allylic alcohol 134. The reaction is explained by the migration of the Pd via the elimination and readdition of H—Pd—1[107]. [Pg.146]

The a-bromo-7-lactone 901 undergoes smooth coupling with the acetonyltin reagent 902 to afford the o-acetonyl-7-butyrolactone 903[763j. The o-chloro ether 904, which has no possibility of //-elimination after oxidative addition, reacts with vinylstannane to give the allyl ether 905, The o -bromo ether 906 is also used for the intramolecular alkyne insertion and transmetallation with allylstannane to give 907[764],... [Pg.261]

The stereochemistry of the Pd-catalyzed allylation of nucleophiles has been studied extensively[5,l8-20]. In the first step, 7r-allylpalladium complex formation by the attack of Pd(0) on an allylic part proceeds by inversion (anti attack). Then subsequent reaction of soft carbon nucleophiles, N- and 0-nucleophiles proceeds by inversion to give 1. Thus overall retention is observed. On the other hand, the reaction of hard carbon nucleophiles of organometallic compounds proceeds via transmetallation, which affords 2 by retention, and reductive elimination affords the final product 3. Thus the overall inversion is observed in this case[21,22]. [Pg.292]

Based on the above-mentioned stereochemistry of the allylation reactions, nucleophiles have been classified into Nu (overall retention group) and Nu (overall inversion group) by the following experiments with the cyclic exo- and ent/n-acetales 12 and 13[25], No Pd-catalyzed reaction takes place with the exo-allylic acetate 12, because attack of Pd(0) from the rear side to form Tr-allyl-palladium is sterically difficult. On the other hand, smooth 7r-allylpalladium complex formation should take place with the endo-sWyWc acetate 13. The Nu -type nucleophiles must attack the 7r-allylic ligand from the endo side 14, namely tram to the exo-oriented Pd, but this is difficult. On the other hand, the attack of the Nu -type nucleophiles is directed to the Pd. and subsequent reductive elimination affords the exo products 15. Thus the allylation reaction of 13 takes place with the Nu nucleophiles (PhZnCl, formate, indenide anion) and no reaction with Nu nucleophiles (malonate. secondary amines, LiP(S)Ph2, cyclopentadienide anion). [Pg.294]

Diphenylketene (253) reacts with allyl carbonate or acetate to give the a-allylated ester 255 at 0 °C in DMF, The reaction proceeds via the intermediate 254 formed by the insertion of the C = C bond of the ketene into 7r-allylpalla-dium, followed by reductive elimination. Depending on the reaction conditions, the decarbonylation and elimination of h-hydrogen take place in benzene at 25 °C to afford the conjugated diene 256(155]. [Pg.324]


See other pages where Elimination-allylation is mentioned: [Pg.192]    [Pg.153]    [Pg.207]    [Pg.111]    [Pg.207]    [Pg.263]    [Pg.192]    [Pg.153]    [Pg.207]    [Pg.111]    [Pg.207]    [Pg.263]    [Pg.89]    [Pg.33]    [Pg.38]    [Pg.57]    [Pg.60]    [Pg.62]    [Pg.62]    [Pg.142]    [Pg.144]    [Pg.166]    [Pg.209]    [Pg.215]    [Pg.222]    [Pg.238]    [Pg.299]    [Pg.311]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Acetate reactions allylic elimination

Allyl ethers elimination reactions

Allyl ethers ene elimination reactions

Allyl olefin elimination

Allyl selenoxide elimination

Allyl sulfoxide elimination

Allylic acetates, decarboxylative eliminations

Allylic nitro compounds elimination

Allylic radicals reductive elimination

Elimination from allylic acetates

Elimination reactions allylic derivatives

Enantioselectivity allylic elimination

Metal-catalyzed addition/elimination allylic alcohol

Nucleophilic substitution allylic elimination

Reductive elimination of allylic radicals

Sulfoxides, allylic thermal elimination

© 2024 chempedia.info