Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl olefin elimination

Reactions of the hydrido(hydroxo) complex 2 with several substrates were examined (Scheme 6-14) [6]. The reactions are fairly complicated and several different types of reachons are observed depending on the substrate. Methyl acrylate and small Lewis bases such as CO, P(OMe)3, BuNC coordinate to the five-coordinated complex 2 affording the corresponding six-coordinate complexes. In reactions with the unsaturated bonds in dimethylacetylenedicarboxylate, carbon dioxide, phenylisocyanate indications for the addition across the O-H bond but not across the Os-OH bond were obtained. In reactions with olefins such as methyl vinyl ketone or allyl alcohol, elimination of a water molecule was observed to afford a hydrido metalla-cyclic compound or a hydrido (ethyl) complex. No OH insertion product was obtained. [Pg.190]

Both conjugated and isolated dienes are usually accessible by extension of the methods suitable for mono-olefins. Allylic functions for ehmination may be produced by double bond introduction a to a functional group or by allylic substitution of an olefin. Both reduction of allylic systems to mono-olefins and elimination to give dienes, may involve rearrangement. [Pg.267]

Whereas simple olefins are not usually made by elimination from halides, conjugated systems are frequently obtained in this way. The cases of a- and j5-halo ketones and their vinylogues have already been covered. Allylic halides may also be eliminated to form dienes, for example, the 2,4-diene (109)... [Pg.332]

ISOC reaction was employed to synthesize substituted tetrahydrofurans 172 fused to isoxazolines (Scheme 21) [44b]. The silyl nitronates 170 resulted via the nitro ethers 169 from base-mediated Michael addition of allyl alcohols 168 to nitro olefins 167. Cycloaddition of 170 followed by elimination of silanol provided 172. Reactions were conducted in stepwise and one-pot tandem fashion (see Table 16). A terminal olefinic Me substituent increased the rate of cycloaddition (Entry 3), while an internal olefinic Me substituent decreased it (Entry 4). [Pg.25]

The proposed catalytic cycle is shown in Scheme 31. Hence, FeCl2 is reduced by magnesium and subsequently coordinates both to the 1,3-diene and a-olefin (I III). The oxidative coupling of the coordinated 1,3-diene and a-olefin yields the allyl alkyl iron(II) complex IV. Subsequently, the 7i-a rearrangement takes place (IV V). The syn-p-hydride elimination (Hz) gives the hydride complex VI from which the C-Hz bond in the 1,4-addition product is formed via reductive elimination with regeneration of the active species II to complete the catalytic cycle. Deuteration experiments support this mechanistic scenario (Scheme 32). [Pg.53]

Some particular features should be mentioned. Instead of Michael additions, a-nitroolefins are reported to yield allyl sulfones under Pd catalysis (equation 21). Halogenated acceptor-olefins can substitute halogen P to the acceptor by ipso-substitution with sulfinate (equation 22 , equation 23 ) or can lose halogen a to the acceptor in the course of a secondary elimination occurring P to the introduced sulfonyl groups (equation 24). On the other hand, the use of hydrated sodium sulfinates can lead to cleavage at the C=C double bond (equation 25). [Pg.173]

The thermolysis of acyclic- and/or six- and larger ring sulfoxides to yield olefins and sulfenic acids is well documented . The formation of allylic sulfenic acids and thiosulfinates in the thermolysis of thiirane oxides containing hydrogen on the a-carbon of the ring substituent (which is syn to the S—O bond) has been discussed previously in terms of /i-elimination of hydrogen, which is facilitated by relief of strain in the three-membered ring (Section llI.C.l). [Pg.425]

The reductive elimination of a variety of )3-substituted sulfones for the preparation of di-and tri-substituted olefins (e.g. 75 to 76) and the use of allyl sulfones as synthetic equivalents of the allyl dianion CH=CH—CHj , has prompted considerable interest in the [1,3]rearrangements of allylic sulfones ". Kocienski has thus reported that while epoxidation of allylic sulfone 74 with MCPBA in CH2CI2 at room temperature afforded the expected product 75, epoxidation in the presence of two equivalents of NaHCOj afforded the isomeric j ,y-epoxysulfone 77. Similar results were obtained with other a-mono- or di-substituted sulfones. On the other hand, the reaction of y-substituted allylic sulfones results in the isomerization of the double bond, only. The following addition-elimination free radical chain mechanism has been suggested (equations 45, 46). In a closely related and simultaneously published investigation, Whitham and coworkers reported the 1,3-rearrangement of a number of acyclic and cyclic allylic p-tolyl sulfones on treatment with either benzoyl peroxide in CCI4 under reflux or with... [Pg.688]

Kurosawa et al. have reported that the relative stability of the ti-allyl palladium thi-olate 39 and the allyl sulfide/Pd(0) was highly ligand dependent. In the presence of PPhs or P(OMe)3 the stability was in favor of reductive elimination (Eq. 7.28), while in the presence of olefin or in the absence of any additional ligand the stability was in favor of oxidative addition (Eq. 7.29) [38]. This can explain the reactivity of the n-allyl palladium thiolate 33 and 38 proposed in Eq. (7.24) and path (c) of Scheme 7-10. The complex 33 should react with PhSH, but C-S bond-forming reductive elimination has to be suppressed in order to obtain the desired product 32. On the other hand, the complex 38 requires the phosphine ligand to promote the C-S bond-forming reductive elimination. [Pg.228]


See other pages where Allyl olefin elimination is mentioned: [Pg.16]    [Pg.169]    [Pg.223]    [Pg.16]    [Pg.387]    [Pg.304]    [Pg.84]    [Pg.187]    [Pg.58]    [Pg.80]    [Pg.173]    [Pg.425]    [Pg.688]    [Pg.54]    [Pg.418]    [Pg.313]    [Pg.147]    [Pg.195]    [Pg.286]    [Pg.323]    [Pg.1103]    [Pg.18]    [Pg.570]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Elimination-allylation

Olefin, allyl

© 2024 chempedia.info