Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elemental purification

Checking the Purification. The purity of the dry re-crystallised material must now be determined, as it is possible that repeated recrystallisation may be necessary to obtain the pure material. The purity is therefore checked by a melting-point determination, and the recrystallisation must be repeated until a sharp melting-point is obtained. Should the compound have no well-defined melting-point e.g.y the salt of an organic acid or base), it must be analysed for one suitable component element, until its analysis agrees closely with that theoretically required. [Pg.20]

I eon—Helium Separation and Purification. As indicated eadier, neon, heHum, and hydrogen do not Hquefy in the high pressure (nitrogen) column because these condense at much lower temperatures than nitrogen. As withdrawn, the noncondensable stream has a neon—helium content that varies 1—12% in nitrogen, depending on the rate of withdrawal and elements of condenser design and plant operation. [Pg.11]

Metal Purification. Depending on the relative boiling points, purification may be carried out by RE distHlation, aHoying element distHlation, or 2one melting. [Pg.546]

Potassium removal is required because the presence of potassium during electrolysis reportedly promotes the formation of the a-Mn02 phase which is nonbattery active. Neutralization is continued to a pH of approximately 4.5, which results in the precipitation of additional trace elements and, along with the ore gangue, can be removed by filtration. Pinal purification of the electrolyte Hquor by the addition of sulfide salts results in the precipitation of all nonmanganese transition metals. [Pg.513]

Industry consolidation and rationalization have resulted. A shift in production toward wet-acid purification routes has occurred and only the most economically viable elemental phosphoms and thermal acid producers remain in business. There has also been an increased focus on higher value ... [Pg.344]

Sepa.ra.tion of Plutonium. The principal problem in the purification of metallic plutonium is the separation of a small amount of plutonium (ca 200—900 ppm) from large amounts of uranium, which contain intensely radioactive fission products. The plutonium yield or recovery must be high and the plutonium relatively pure with respect to fission products and light elements, such as lithium, beryUium, or boron. The purity required depends on the intended use for the plutonium. The high yield requirement is imposed by the price or value of the metal and by industrial health considerations, which require extremely low effluent concentrations. [Pg.200]

Plants that bum good quaUty elemental sulfur or H2S gas generally have no faciUties for purifying SO2. Before the advent of relatively pure Frasch or recovered sulfur, however, hot gas purification was frequentiy used in which the SO2 gas stream was passed through beds of granular soHds to filter out fine dust particles just prior to its entering the converter. [Pg.183]

In the tributyl phosphate extraction process developed at the Ames Laboratory, Iowa State University (46—48), a solution of tributyl phosphate (TBP) in heptane is used to extract zirconium preferentially from an acid solution (mixed hydrochloric—nitric or nitric acid) of zirconium and hafnium (45). Most other impurity elements remain with the hafnium in the aqueous acid layer. Zirconium recovered from the organic phase can be precipitated by neutralization without need for further purification. [Pg.430]

Zone refining can be appHed to the purification of almost every type of substance that can be melted and solidified, eg, elements, organic compounds, and inorganic compounds. Because the soHd—Hquid phase equiHbria are not favorable for all impurities, zone refining often is combined with other techniques to achieve ultrahigh purity. [Pg.446]

Preparation. The simplest method of preparation is a combination of the elements at a suitable temperature, usually ia the range of 1100—2000°C. On a commercial scale, borides are prepared by the reduction of mixtures of metallic and boron oxides usiag aluminum, magnesium, carbon, boron, or boron carbide, followed by purification. Borides can also be synthesized by vapor-phase reaction or electrolysis. [Pg.219]

Of the removal processes that have attained commercial status, the current favorite employs a shiny of lime or limestone. The activity of the reagent is promoted by the addition of small amounts of carboxylic acids such as adipic acid. The gas and the shiny are contacted in a spray tower. The calcium salt is discarded. A process that employs aqueous sodium citrate, however, is suited for the recoveiy of elemental sulfur. The citrate solution is regenerated and recycled. (Kohl and Riesenfeld, Gas Purification, Gulf, 1985, p. 356.)... [Pg.2110]

In the present time our organosilicon adsorbents found the practice application in such as fields such as, for example 1) the method of spectral-chemical determination of gold Clarke quantities in poor ores and rocks has been applied in analytic practice of geological establishments and research institutes 2) at the first time soi ption process was used in hydro-chemical analyze of fresh water. This method has been allowed to analyze of Baikal water 3) for purification metallurgical waters and waste solutions of chemical-metallurgical plants due to toxic elements 4) for creation the filters for extraction of rare elements, for example, uranium 5) for silver utilization from wasted of cinema-photo manufactory. This method has been applied to obtain the silver of high purity. [Pg.273]

Application of these tests at successive steps will give a good indication of whether or not the purification is satisfactory and will also show when adequate purification has been achieved. Finally elemental analyses, e.g. of carbon, hydrogen, nitrogen, sulfur, metals etc. are very sensitive to impurities (other than with isomers), and are good criteria of purity. [Pg.61]

This material gives satisfactory elemental analysis and can be used without purification for further reactions. [Pg.84]

The fuel for the Peach Bottom reactor consisted of a uranium-thorium dicarbide kernel, overcoated with pyrolytic carbon and silicon carbide which were dispersed in carbon compacts (see Section 5), and encased in graphite sleeves [37]. There were 804 fuel elements oriented vertically in the reactor core. Helium coolant flowed upward through the tricusp-shaped coolant channels between the fuel elements. A small helium purge stream was diverted through the top of each element and flowed downward through the element to purge any fission products leaking from the fuel compacts to the helium purification system. The Peach... [Pg.448]

MWCNT was first discovered by arc-discharge method of pure carbon and successive discovery of SWCNT was also based on the same method in which carbon is co-evaporated with metallic element. Optimisation of such metallic catalyst has recently been performed. Although these electric arc methods can produce gram quantity of MWCNT and SWCNT, the raw product requires rather tedious purification process. [Pg.10]

The commercial recovery of iodine on an industrial scale depends on the particular source of the element.Erom natural brines, such as those at Midland (Michigan) or in Russia or Japan, chlorine oxidation followed by air blowout as for bromine (above) is much used, the final purification being by resublimation. Alternatively the brine, after clarification, can be treated with just sufficient AgNOs to precipitate the Agl which is then treated with clean scrap iron or steel to form metallic Ag and a solution of EeU the Ag is redissolved in HNO3 for recycling and the solution is treated with CI2 to liberate the h ... [Pg.799]


See other pages where Elemental purification is mentioned: [Pg.157]    [Pg.711]    [Pg.284]    [Pg.126]    [Pg.157]    [Pg.711]    [Pg.284]    [Pg.126]    [Pg.209]    [Pg.272]    [Pg.413]    [Pg.24]    [Pg.608]    [Pg.328]    [Pg.201]    [Pg.534]    [Pg.253]    [Pg.443]    [Pg.330]    [Pg.94]    [Pg.383]    [Pg.240]    [Pg.119]    [Pg.136]    [Pg.117]    [Pg.1999]    [Pg.223]    [Pg.239]    [Pg.433]    [Pg.447]    [Pg.351]    [Pg.314]    [Pg.608]    [Pg.140]    [Pg.221]    [Pg.369]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Isolation and purification of the element

© 2024 chempedia.info