Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic substitution acylation

Tin, zinc, boron, and mercury metallopyrimidines in alkylation and arylation reactions Acylation by electrophilic substitution Acylation by palladium-catalyzed reactions with stannanes Tin metallopyrimidines in acylation reactions Coupling reactions in quinazolines and perimidines Alkylation and arylation by organometallic adduct formation... [Pg.94]

There are a wide variety of methods for introduction of substituents at C3. Since this is the preferred site for electrophilic substitution, direct alkylation and acylation procedures are often effective. Even mild electrophiles such as alkenes with EW substituents can react at the 3-position of the indole ring. Techniques for preparation of 3-lithioindoles, usually by halogen-metal exchange, have been developed and this provides access not only to the lithium reagents but also to other organometallic reagents derived from them. The 3-position is also reactive toward electrophilic mercuration. [Pg.105]

Reactions. The CF O— group exerts predominant para orientation in electrophilic substitution reactions such as nitration, halogenation, acylation, and alkylation (350). [Pg.333]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

Anthraquinone dyes are derived from several key compounds called dye intermediates, and the methods for preparing these key intermediates can be divided into two types (/) introduction of substituent(s) onto the anthraquinone nucleus, and (2) synthesis of an anthraquinone nucleus having the desired substituents, starting from benzene or naphthalene derivatives (nucleus synthesis). The principal reactions ate nitration and sulfonation, which are very important ia preparing a-substituted anthraquiaones by electrophilic substitution. Nucleus synthesis is important for the production of P-substituted anthraquiaones such as 2-methylanthraquiQone and 2-chloroanthraquiaone. Friedel-Crafts acylation usiag aluminum chloride is appHed for this purpose. Synthesis of quinizatia (1,4-dihydroxyanthraquiQone) is also important. [Pg.309]

Frontier orbital theory predicts that electrophilic substitution of pyrroles with soft electrophiles will be frontier controlled and occur at the 2-position, whereas electrophilic substitution with hard electrophiles will be charge controlled and occur at the 3-position. These predictions may be illustrated by the substitution behaviour of 1-benzenesulfonylpyr-role. Nitration and Friedel-Crafts acylation of this substrate occurs at the 3-position, whereas the softer electrophiles generated in the Mannich reaction (R2N=CH2), in formylation under Vilsmeier conditions (R2N=CHC1) or in formylation with dichloromethyl methyl ether and aluminum chloride (MeO=CHCl) effect substitution mainly in the 2-position (81TL4899, 81TL4901). Formylation of 2-methoxycarbonyl-l-methylpyrrole with... [Pg.45]

Acyl-pyrroles, -furans and -thiophenes in general have a similar pattern of reactivity to benzenoid ketones. Acyl groups in 2,5-disubstituted derivatives are sometimes displaced during the course of electrophilic substitution reactions. iV-Alkyl-2-acylpyrroles are converted by strong anhydrous acid to A-alkyl-3-acylpyrroles. Similar treatment of N-unsubstituted 2- or 3-acyIpyrroles yields an equilibrium mixture of 2- and 3-acylpyrroles pyrrolecarbaldehydes also afford isomeric mixtures 81JOC839). The probable mechanism of these rearrangements is shown in Scheme 65. A similar mechanism has been proposed for the isomerization of acetylindoles. [Pg.73]

Beyer synthesis, 2, 474 electrolytic oxidation, 2, 325 7r-electron density calculations, 2, 316 1-electron reduction, 2, 282, 283 electrophilic halogenation, 2, 49 electrophilic substitution, 2, 49 Emmert reaction, 2, 276 food preservative, 1,411 free radical acylation, 2, 298 free radical alkylation, 2, 45, 295 free radical amidation, 2, 299 free radical arylation, 2, 295 Friedel-Crafts reactions, 2, 208 Friedlander synthesis, 2, 70, 443 fluorination, 2, 199 halogenation, 2, 40 hydrogenation, 2, 45, 284-285, 327 hydrogen-deuterium exchange, 2, 196, 286 hydroxylation, 2, 325 iodination, 2, 202, 320 ionization constants, 2, 172 IR spectra, 2, 18 lithiation, 2, 267... [Pg.831]

Diels-Alder reactions, 4, 842 flash vapour phase pyrolysis, 4, 846 reactions with 6-dimethylaminofuKenov, 4, 844 reactions with JV,n-diphenylnitrone, 4, 841 reactions with mesitonitrile oxide, 4, 841 structure, 4, 715, 725 synthesis, 4, 725, 767-769, 930 theoretical methods, 4, 3 tricarbonyl iron complexes, 4, 847 dipole moments, 4, 716 n-directing effect, 4, 44 2,5-disubstituted synthesis, 4, 116-117 from l,3-dithiolylium-4-olates, 6, 826 electrocyclization, 4, 748-750 electron bombardment, 4, 739 electronic deformation, 4, 722-723 electronic structure, 4, 715 electrophilic substitution, 4, 43, 44, 717-719, 751 directing effects, 4, 752-753 fluorescence spectra, 4, 735-736 fluorinated derivatives, 4, 679 H NMR, 4, 731 Friedel-Crafts acylation, 4, 777 with fused six-membered heterocyclic rings, 4, 973-1036 fused small rings structure, 4, 720-721 gas phase UV spectrum, 4, 734 H NMR, 4, 7, 728-731, 939 solvent effects, 4, 730 substituent constants, 4, 731 halo... [Pg.894]

Pyridine lies near one extreme in being far less reactive than benzene toward substitution by electrophilic reagents. In this respect it resembles strongly deactivated aromatic compounds such as nitrobenzene. It is incapable of being acylated or alkylated under Friedel-Crafts conditions, but can be sulfonated at high temperature. Electrophilic substitution in pyridine, when it does occur, takes place at C-3. [Pg.507]

Other typical electrophilic aromatic substitution reactions—nitration (second entr-y), sul-fonation (fourth entry), and Friedel-Crafts alkylation and acylation (fifth and sixth entries)—take place readily and are synthetically useful. Phenols also undergo electrophilic substitution reactions that are limited to only the most active aromatic compounds these include nitrosation (third entry) and coupling with diazonium salts (seventh entry). [Pg.1002]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

In their acidity, basicity, and the directive influence exerted on electrophilic substitution reactions in benzenoid nuclei, acylamino groups show properties which are intermediate between those of free amino and hydroxyl groups, and, therefore, it is at first surprising to find that the tautomeric behavior of acylaminopyridines closely resembles that of the aminopyridines instead of being intermediate between that of the amino- and hydroxy-pyridines. The basicities of the acylaminopyridines are, indeed, closer to those of the methoxy-pyridines than to those of the aminopyridines, the position of the tautomeric equilibrium being determined by the fact that the acyl-iminopyridones are strong bases like the iminopyridones and unlike the pyridones themselves. Thus, relative to the conversion of an... [Pg.420]

Product complex 7 as well as the free product 3 are much less reactive towards further electrophilic substitution as is the starting material thus the formation of polyacylated products is not observed. If the starting material bears one or more non-deactivating substituents, the direction of acylation can be predicted by the general rules for aromatic substitution. [Pg.117]

In an initial step the reactive formylating agent is formed from N,N-dimethylformamide (DMF) 2 and phosphorus oxychloride. Other N,N-disubstituted formamides have also found application for example A -methyl-A -phenylformamide is often used. The formylating agent is likely to be a chloromethyl iminium salt 4—also called the Vilsmeier complex (however its actual structure is not rigorously known)—that acts as the electrophile in an electrophilic substitution reaction with the aromatic substrate 1 (see also Friedel-Crafts acylation reaction) ... [Pg.280]

The way in which various substituents affect the polarization of a carbonyl group is similar to the way they affect the reactivity of an aromatic ring toward electrophilic substitution (Section 16.5). A chlorine substituent, for example, inductively withdraws electrons from an acyl group in the same way that it withdraws elections from and thus deactivates an aromatic ring. Similarly, amino, methoxvl, and methylthio substituents donate electrons to acyl groups by resonance in the same way that they donate electrons to and thus activate aromatic rings. [Pg.791]

In accord with experimental observations, SCFMO calculations indicate that an /V-acyl function should deactivate 5f/-dibenz[/>,/]azepine towards electrophilic substitution at the carbocyclic rings, and that substitution should occur preferentially at the CIO position.32 The calculated dipole moment (0.98 D) for 5f/-dibenz[A,/]azepine compares favorably with the measured value (0.96 D), and is expected for a nonplanar ring system.58... [Pg.211]

Protonation and deprotonation reactions of corroles have already been mentioned (see Introduction). Attempts to achieve electrophilic substitution reactions, at the corrole, e.g. Friedel-Crafts acylation, have been unsuccessful.1 Heating corroles with acetic anhydride yields the corresponding 21-acetyl derivatives l.8a,b... [Pg.670]

The intermediate adduct can be substituted at the a-position by a variety of electrophiles, including acyl chlorides, epoxides, aldehydes, and ketones.79... [Pg.697]

The chemical modification of poly (2,6-dimethyl-l,4-phenylene oxide) (PPO) by several polymer analogous reactions is presented. The chemical modification was accomplished by the electrophilic substitution reactions such as bromination, sulfonylation and acylation. The permeability to gases of the PPO and of the resulting modified polymers is discussed. Very good permeation properties to gases, better than for PPO were obtained for the modified structures. The thermal behavior of the substituted polymers resembled more or less the properties of the parent polymer while their solution behavior exhibited considerable differences. [Pg.46]

In our research, three chemical modification approaches were investigated bromination, sulfonylation, and acylation on the aromatic ring. The specific objective of this paper is to present the chemical modification on the PPO backbone by a variety of electrophilic substitution reactions and to examine the features that distinguish modified PPO from unmodified PPO with respect to gas permeation properties, polymer solubility and thermal behavior. [Pg.46]

Electrophilic substitution of pyrrole can, however, be carried out under specialised conditions (e.g. acylation with (MeC0)20/BF3, sulphonation with a pyridine/S03 complex, C5H5N-S03, cf. (67)) leading to preferential attack at the 2-, rather than the 3-, position. This reflects the slightly greater stabilisation of the Wheland intermediate for the former (70) compared with that for the latter (71) ... [Pg.167]

Tyrosine may be targeted specifically for modification through its phenolate anion by acylation, through electrophilic reactions such as the addition of iodine or diazonium ions, and by Mannich condensation reactions. The electrophilic substitution reactions on tyrosine s ring all occur at the ortho position to the —OH group (Figure 1.11). Most of these reactions proceed effectively only when tyrosine s ring is ionized to the phenolate anion form. [Pg.11]

Electrophilic substitution reactions on the carbon atoms of 1,3,4-thiadiazoles are rare due to the low electron density of ring carbons. G-Acylation can be accomplished via rearrangement of intermediate W-acylthiadiazolium salts while radical halogenation can give chlorinated or brominated 2-halo-5-substituted thiadiazoles. Examples can be found in CHEC(1984) <1984CHEC(6)545> and in Houben-Weyls Science of Synthesis <2004HOU(13)349>. [Pg.579]

Indolizine is much more basic than indole (p Ta = 3.9 vs. —3.5), and the stability of the cation makes it less reactive and resistant to acid-catalyzed polymerization. Protonation occurs at C-3, although 3-methylindolizine protonates also at C-l. Introduction of methyl groups raises the basicity of indolizines. Electrophilic substitutions such as acylation, Vilsmeyer formylation, and diazo-coupling all take place at C-3. Nitration of 2-methylindolizine under mild conditions results in substitution at C-3, but under strongly acidic conditions it takes place at C-l, presumably via attack on the indolizinium cation. However, the nitration of indolizines often can provoke oxidation processes. [Pg.370]

Additional acylation studies were also reported (24), (26). In the first case it is claimed that acylation of thiophene is achieved by means of HC104 and acetic anhydride affording a 65 % yield of 2-acetylthiophene. In the second paper Levine and coworkers reported that while 2,5-dimethylthiophene could be readily acetylated, 2,5-dichlorothiophene acetylated sluggishly. This is, however, readily explained, since the presence of chlorine atoms on the thiophene ring decreased its reactivity in electrophilic substitution reactions. In the case of methyl substitution, however, the 3 and 4 positions of the ring are activated toward electrophilic substitution by the inductive and hyperconjugative effects. Thus 2,5-dimethylthiophene was successfully acylated by the boron fluoride etherate method in high yield with three aliphatic anhydrides. [Pg.137]


See other pages where Electrophilic substitution acylation is mentioned: [Pg.3]    [Pg.80]    [Pg.89]    [Pg.136]    [Pg.507]    [Pg.599]    [Pg.659]    [Pg.673]    [Pg.784]    [Pg.790]    [Pg.566]    [Pg.148]    [Pg.547]    [Pg.209]    [Pg.175]    [Pg.503]    [Pg.506]    [Pg.51]    [Pg.149]    [Pg.597]    [Pg.97]    [Pg.248]    [Pg.947]    [Pg.97]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Acyl electrophile

Acyl substitution

Acylation, electrophilic

Electrophiles acylation

Electrophilic aromatic substitution Friedel-Crafts acylation

Electrophilic aromatic substitution acyl transfer

Electrophilic aromatic substitution of Friedel-Crafts acylation

Electrophilic aromatic substitution reactions Friedel-Crafts acylation

Electrophilic aromatic substitution, acylation

Electrophilic aromatic substitution, acylation alkylation, limitations

Electrophilic aromatic substitution, acylation arenes

Electrophilic aromatic substitution, acylation intermediates

Electrophilic aromatic substitution, acylation mechanism

Electrophilic aromatic substitution, acylation nitration, mechanism

Electrophilic aromatic substitution, acylation ortho-para directing groups

Electrophilic aromatic substitution, acylation procedures for

Electrophilic aromatic substitution, acylation rearrangements

Indolizines electrophilic substitution: acylation

Substitution, electrophilic Friedel-Crafts acylation

© 2024 chempedia.info