Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic reagents, reactions

Metalated cyclic aldo-nitrones are characterized by high reactivity toward electrophilic reagents. Reactions with aldehydes and ketones afford satisfactory yields of a-hydroxymethyl substituted derivatives of nitrones (551). The reactions were also carried out with a number of aliphatic, aromatic, and hetero-aromatic aldehydes and ketones (Schemes 2.124 and 2.125). [Pg.230]

Reactions with electrophilic reagents. Reactions of nucleic acids with the simplest electrophile, the proton, have been considered in Section A2. Somewhat similar are the reactions by which metal ions bind at many sites on both the bases and the phosphate groups of the backbone.550... [Pg.253]

The selectivity of an electrophile, measured by the extent to which it discriminated either between benzene and toluene, or between the meta- and ara-positions in toluene, was considered to be related to its reactivity. Thus, powerful electrophiles, of which the species operating in Friedel-Crafts alkylation reactions were considered to be examples, would be less able to distinguish between compounds and positions than a weakly electrophilic reagent. The ultimate electrophilic species would be entirely insensitive to the differences between compounds and positions, and would bring about reaction in the statistical ratio of the various sites for substitution available to it. The idea has gained wide acceptance that the electrophiles operative in reactions which have low selectivity factors Sf) or reaction constants (p+), are intrinsically more reactive than the effective electrophiles in reactions which have higher values of these parameters. However, there are several aspects of this supposed relationship which merit discussion. [Pg.141]

One of the most versatile methods for the synthesis of derivatives with the acetylene or cumulene system consists In deprotonatlon of the starting acetylene or cumulene and subsequent reaction of the anionic or organometal1ic intermediate with an electrophilic reagent. [Pg.7]

D. Reactions with Ambident Electrophilic Reagents bearing an spC Electrophilic Center... [Pg.61]

Formamidinoyl isothiocyanates (157) combine with 2-aminothiazoles the ring nitrogen attacks the spC part of the electrophilic reagent (312) further reaction then yields aza-condensed thiazolo-s-triazines (158) (Scheme 99) (313). Mesoionic S-alkvlthiazolo[3.2-fl]-i-tria2ine-5,7-diones (159) are obtained when 2-alkylaminothiazoles react with phenoxycar-bonyl isocyanate (304). [Pg.65]

When unsubstituted, C-5 reacts with electrophilic reagents. Thus phosphorus pentachloride chlorinates the ring (36, 235). A hydroxy group in the 2-position activates the ring towards this reaction. 4-Methylthiazole does not react with bromine in chloroform (201, 236), whereas under the same conditions the 2-hydroxy analog reacts (55. 237-239. 557). Activation of C-5 works also for sulfonation (201. 236), nitration (201. 236. 237), Friede 1-Crafts reactions (201, 236, 237, 240-242), and acylation (243). However, iodination fails (201. 236). and the Gatterman or Reimer-Tieman reactions yield only small amounts of 4-methyl-5-carboxy-A-4-thiazoline-2-one. Recent kinetic investigations show that 2-thiazolones are nitrated via a free base mechanism. A 2-oxo substituent increases the rate of nitration at the 5-position by a factor of 9 log... [Pg.402]

The double bond m the alkenyl side chain undergoes addition reactions that are typical of alkenes when treated with electrophilic reagents... [Pg.447]

The scope of electrophilic aromatic substitution is quite large both the aromatic com pound and the electrophilic reagent are capable of wide variation Indeed it is this breadth of scope that makes electrophilic aromatic substitution so important Elec trophilic aromatic substitution is the method by which substituted derivatives of benzene are prepared We can gam a feeling for these reactions by examining a few typical exam pies m which benzene is the substrate These examples are listed m Table 12 1 and each will be discussed m more detail m Sections 12 3 through 12 7 First however let us look at the general mechanism of electrophilic aromatic substitution... [Pg.474]

The first step m the reaction of electrophilic reagents with benzene is similar An electrophile accepts an electron pair from the tt system of benzene to form a carbocation... [Pg.474]

The electrophilic site of an acyl cation is its acyl carbon An electrostatic poten tial map of the acyl cation from propanoyl chloride (Figure 12 8) illustrates nicely the concentration of positive charge at the acyl carbon as shown by the blue color The mechanism of the reaction between this cation and benzene is analogous to that of other electrophilic reagents (Figure 12 9)... [Pg.484]

Section 12 1 On reaction with electrophilic reagents compounds that contain a ben zene ring undergo electrophilic aromatic substitution Table 12 1 m Section 12 1 and Table 12 3 m this summary give examples... [Pg.508]

Aromatic and heterocycHc compounds are formylated by reaction with dialkyl- or alkylarylformamides in the presence of phosphoms oxychloride or phosgene (Vilsmeier aldehyde synthesis) (125). The Vilsmeier reaction is a Friedel-Crafts type formylation (126), since the intermediate cation formed by the interaction of phosphoms oxychloride with formamide is a typical electrophilic reagent. Ionic addition compounds of formamide with phosgene or phosphoms oxychloride are also known (127). [Pg.559]

The PMBs, when treated with electrophilic reagents, show much higher reaction rates than the five lower molecular weight homologues (benzene, toluene, (9-, m- and -xylene), because the benzene nucleus is highly activated by the attached methyl groups (Table 2). The PMBs have reaction rates for electrophilic substitution ranging from 7.6 times faster (sulfonylation of durene) to ca 607,000 times faster (nuclear chlorination of durene) than benzene. With rare exception, the PMBs react faster than toluene and the three isomeric dimethylbenzenes (xylenes). [Pg.504]

Heterocychc A/-oxides can react at the oxygen atom with a variety of electrophilic reagents to give adducts which, according to the reagent and reaction conditions, may be stable or react further (39). Heterocychc A/-oxides are reduced by reaction of nucleophiles at the N-oxide oxygen. [Pg.191]

Electrophile Addition Reactions. The addition of electrophilic (acidic) reagents HZ to propylene involves two steps. The first is the slow transfer of the hydrogen ion (proton) from one base to another, ie, from Z to the propylene double bond, to form a carbocation. The second is a rapid combination of the carbocation with the base, Z . The electrophile is not necessarily limited to a Lowry-Briiinsted acid, which has a proton to transfer, but can be any electron-deficient molecule (Lewis acid). [Pg.124]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

Fig. 5. Nonoxidative cyanine syntheses. Reactions of the methylene base from (14) with electrophilic reagents. Fig. 5. Nonoxidative cyanine syntheses. Reactions of the methylene base from (14) with electrophilic reagents.
Stmctural variations of the reagents used in these reactions have been a primary source of progress in dye synthesis. Acetylenic reagents for cyanine dye synthesis include the weU-known acetylenic quartemary salts as general electrophilic reagents for the preparation of carbocyanine dyes. A number of tautomeric pairs of acetylenic dyes have been prepared and their tautomeric equiUbria determined (dyes (26a), (26b)) (29). [Pg.395]

In the case of phenazine, substitution in the hetero ring is clearly not possible without complete disruption of the aromatic character of the molecule. Like pyrazine and quinoxa-line, phenazine is very resistant towards the usual electrophilic reagents employed in aromatic substitution reactions and substituted phenazines are generally prepared by a modification of one of the synthetic routes employed in their construction from monocyclic precursors. However, a limited range of substitution reactions has been reported. Thus, phenazine has been chlorinated in acid solution with molecular chlorine to yield the 1-chloro, 1,4-dichloro, 1,4,6-trichloro and 1,4,6,9-tetrachloro derivatives, whose gross structures have been proven by independent synthesis (53G327). [Pg.164]

Inductive and resonance stabilization of carbanions derived by proton abstraction from alkyl substituents a to the ring nitrogen in pyrazines and quinoxalines confers a degree of stability on these species comparable with that observed with enolate anions. The resultant carbanions undergo typical condensation reactions with a variety of electrophilic reagents such as aldehydes, ketones, nitriles, diazonium salts, etc., which makes them of considerable preparative importance. [Pg.166]

Carboxylic acid derivatives on pyridopyrimidine rings appear to undergo normal reactions with electrophilic reagents, e.g. the 6-amide (70) is dehydrated to the 6-nitrile with phosphorus oxychloride. [Pg.210]

In contrast to electrophilic reagents, the highly -tt-deficient character of the pteridine nucleus is responsible for its vulnerability towards nucleophilic attack by a wide variety of reagents. The direct nucleophilic substitution of pteridine itself in a Chichibabin-type reaction with sodamide in diethylaniline, however, was unsuccessful (51JCS474). Pteridin-6-one, on the other hand, yielded pteridine-6,7-dione under the same conditions, via a still unknown reaction mechanism. [Pg.286]

The high reactivity of pyrroles to electrophiles is similar to that of arylamines and is a reflection of the mesomeric release of electrons from nitrogen to ring carbons. Reactions with electrophilic reagents may result in addition rather than substitution. Thus furan reacts with acetyl nitrate to give a 2,5-adduct (33) and in a similar fashion an adduct (34) is obtained from the reaction of ethyl vinyl ether with hydrogen bromide. [Pg.43]

The reactivity of five-membered rings with one heteroatom to electrophilic reagents has been quantitatively compared in a variety of substitution reactions. Table 2 shows the rates of substitution compared to thiophene for formylation by phosgene and iV,AT-dimethylfor-mamide, acetylation by acetic anhydride and tin(IV) chloride, and trifluoroacetylation with trifluoroacetic anhydride (71AHC(13)235). [Pg.43]


See other pages where Electrophilic reagents, reactions is mentioned: [Pg.167]    [Pg.74]    [Pg.167]    [Pg.17]    [Pg.167]    [Pg.167]    [Pg.74]    [Pg.167]    [Pg.17]    [Pg.167]    [Pg.182]    [Pg.167]    [Pg.71]    [Pg.28]    [Pg.53]    [Pg.59]    [Pg.240]    [Pg.76]    [Pg.292]    [Pg.67]    [Pg.394]    [Pg.432]    [Pg.28]    [Pg.41]   


SEARCH



Reagent electrophilic

© 2024 chempedia.info