Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic reactions soft carbon compounds

Application of 7r-allylpalladium chemistry to organic synthesis has made remarkable progress[l]. As deseribed in Chapter 3, Seetion 3, Tt-allylpalladium complexes react with soft carbon nucleophiles such as maionates, /3-keto esters, and enamines in DMSO to form earbon-carbon bonds[2, 3], The characteristie feature of this reaction is that whereas organometallic reagents are eonsidered to be nucleophilic and react with electrophiles, typieally earbonyl eompounds, Tt-allylpalladium complexes are electrophilie and reaet with nucleophiles such as active methylene compounds, and Pd(0) is formed after the reaction. [Pg.290]

Catalytic reactions of allylic electrophiles with carbon or heteroatom nucleophiles to form the products of formal S 2 or S 2 substitutions (Equation 20.1) are called "catalytic allylic substitution reactions." Tliese reactions have become classic processes catalyzed by transition metal complexes and are often conducted in an asymmetric fashion. The aUylic electrophile is typically an allylic chloride, acetate, carbonate, or other t)q e of ester derived from an allylic alcohol. The nucleophile is most commonly a so-called soft nucleophile, such as the anion of a p-dicarbonyl compound, or it is a heteroatom nucleophile, such as an amine or the anion of an imide. The reactions with carbon nucleophiles are often called allylic alkylations. [Pg.967]

The [i-aUyl complexes can react with several types of nucleophiles, giving rise to the corresponding substitution products. O- and N-nucleophiles as well as soft carbon nucleophiles attack the t-allyl complex directly at the aUylic position, while hard C-nucleophiles react via transmetaUations [2c, 3]. If the nucleophihc attack occurs under an atmosphere of CO, insertion of CO can occur, yielding carbonyl compounds [4]. Alkenes and aUcynes can also insert into allyhnetal bonds, a protocol that is used preferentially for cycUzations [5]. Cyclizations can also occur, if the 7t-allylmetal complex contains an internal nucleophilic center. If the metalallyl complex acts as a nucleophile, direct coupling with aryl halides [6] or additions to electrophiles such as aldehydes, ketones, or imines are possible [7]. This review focuses on C-C coupling reactions via these tt-allyhnetal (or in some cases, a-allyhnetal) intermediates. [Pg.925]

The catalytic version of allylation of nucleophiles via 7r-allylpaUadium intermediates was discovered in 1970 using allylic esters and aUyl phenyl ethers as substrates (Scheme Formation of 7r-allylpaUadium complexes by oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of electrophilic rr-allylpalladium complexes with soft carbon nucleophiles are the basis of the catalytic allylation. After the reaction, Pd(0) is regenerated, which undergoes oxidative addition to the allylic compounds again, making the whole reaction catalytic. The efficient catalytic cycle is ascribed to the characteristic feature that Pd(0) is more stable than Pd(II). Allylation of carbon nucleophiles with allyhc compounds via TT-allylpalladium complexes is called the Tsuji-Trost reaction. The reaction has wide synthetic applications, particularly for cyclization. " ... [Pg.41]

Dialkyl triselenocarbonates have been characterized as ambident electrophiles by Henriksen and Kristiansen on the basis of their study of the reaction of these compounds with amines. In general, this reaction resulted in the formation of various products, a fact that was rationalized by the application of Pearson s principle of hard and soft acids and bases. Thus the selenocarbonyl carbon atom was found to represent the harder centre of acidity, combining principally with the harder amine base added, whereas the selenium atom of the alkylseleno-group appeared to represent a softer centre of acidity, combining preferentially with the softer alkyl selenide ion liberated by the former process. [Pg.300]

Enamine nucleophiles react readily with soft conjugated electrophiles, such as a, 3-unsaturated carbonyl, nitro, and sulfonyl compounds [20-22], Both aldehydes and ketones can be used as donors (Schemes 27 and 28). These Michael-type reactions are highly useful for the construction of carbon skeletons and often the yields are very high. The problem, however, is the enantioselectivity of the process. Unlike the aldol and Mannich reactions, where even simple proline catalyst can effectively direct the addition to the C = O or C = N bond by its carboxylic acid moiety, in conjugate additions the charge develops further away from the catalyst (Scheme 26) ... [Pg.54]

For Pd-catalyzed cross-coupling reactions the organopalladium complex is generated from an organic electrophile RX and a Pd(0) complex in the presence of a carbon nucleophile. Not only organic halides but also sulfonium salts [38], iodonium salts [39], diazonium salts [40], or thiol esters (to yield acylpalladium complexes) [41] can be used as electrophiles. With allylic electrophiles (allyl halides, esters, or carbonates, or strained allylic ethers and related compounds) Pd-i73-jt-allyl complexes are formed these react as soft, electrophilic allylating reagents. [Pg.282]

Diazo ketones also possess an electrophilic diazo group, and hence are susceptible to diazo-coupling reactions with suitable soft nucleophiles. Examples are given in equations (11) and (12). Phospha-zines such as (19) are useful synthetic intermediates in their own right. The carbon terminus of the 1,3-dipole possesses nucleophilic properties and can participate in aldol-type reactions with the particularly electrophilic carbonyl groups in 1,2-di- and 1,2,3-tri-carbonyl compounds. Intramolecular condensations occur with greater ease (equation 13). Reaction of diazo ketones of the type summarized in equations (9)-(12) have been thoroughly reviewed. ... [Pg.893]

The molybdenum and tungsten complexes catalyze reactions of soft nucleophiles, such as malonates, related 1,3-dicarbonyl compoimds, and nitroalkanes. Azlactones are also soft carbanions, and Trost has shown that complexes formed from molybdenum and the bis(pyridine) ligands catalyze enantioselective and diastereoselective allylation of azlactones with allylic phosphates to form quaternary amino acids (Equation 20.40). In these reactions, the nucleophile adds to the more substituted position of the allylic electrophile, and a stereocenter is formed at both the allyl carbon and the azlactone carbon. One route to the protease inhibitor tipranavir by the molybdenum-catalyzed allylation with 1,3-dicarbonyl compounds was demonstrated by Trost (Equation 20.41), and the Merck process group used related allylation chemistry with Trost s bis(pyridine) ligand to prepare the cyclopentanone precursor to various analogs of tipranavir (Equation 20.42). [Pg.990]


See other pages where Electrophilic reactions soft carbon compounds is mentioned: [Pg.8]    [Pg.887]    [Pg.143]    [Pg.79]    [Pg.186]    [Pg.623]    [Pg.326]    [Pg.145]    [Pg.145]    [Pg.137]    [Pg.2048]    [Pg.2049]    [Pg.4317]    [Pg.145]    [Pg.213]    [Pg.182]    [Pg.2047]    [Pg.2048]    [Pg.4316]    [Pg.12]    [Pg.49]    [Pg.125]    [Pg.279]    [Pg.103]   


SEARCH



Carbon electrophile

Carbon electrophiles

Soft Electrophiles

Soft carbon

Soft electrophile

© 2024 chempedia.info