Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic insertion reactions

Mechanistically, both reactions are electrophilic insertion reactions into the methane C—H bonds. In the platinum insertion reaction subsequent chlorolysis of the surface... [Pg.643]

Photolytically generated carbene, as mentioned above, undergoes a variety of undiscriminated addition and insertion reactions and is therefore of limited synthetic utility. The discovery (3) of the generation of carbenes by the zinc-copper couple, however, makes carbene addition to double bonds synthetically useful. The iodo-methylzinc iodide complex is believed to function by electrophilic addition to the double bond in a three-center transition state giving essentially cis addition. Use of the... [Pg.116]

The chemistry of metalated aziridines is far less developed than the chemistry of metalated epoxides, although from what is known [lb], it is obvious that their chemistry is similar. Like metalated epoxides, metalated aziridines can act as classical nucleophiles with a variety of electrophiles to give more highly substituted aziridines (Scheme 5.56, Path A). A small amount is known about how they can act as electrophiles with strong nucleophiles to undergo reductive alkylation (Path B), and undergo C-H insertion reactions (Path C). [Pg.172]

Rhodium carboxylates have been found to be effective catalysts for intramolecular C—H insertion reactions of a-diazo ketones and esters.215 In flexible systems, five-membered rings are formed in preference to six-membered ones. Insertion into methine hydrogen is preferred to a methylene hydrogen. Intramolecular insertion can be competitive with intramolecular addition. Product ratios can to some extent be controlled by the specific rhodium catalyst that is used.216 In the example shown, insertion is the exclusive reaction with Rh2(02CC4F9)4, whereas only addition occurs with Rh2(caprolactamate)4, which indicates that the more electrophilic carbenoids favor insertion. [Pg.936]

The synthesized CPMV-alkyne 42 was subjected to the CuAAC reaction with 38. Due to the strong fluorescence of the cycloaddition product 43 as low as 0.5 nM, it could be detected without the interference of starting materials. TMV was initially subjected to an electrophilic substitution reaction at the ortho-position of the phenol ring of tyrosine-139 residues with diazonium salts to insert the alkyne functionality, giving derivative 44 [100]. The sequential CuAAC reaction was achieved with greatest efficiency yielding compound 45, and it was found that the TMV remained intact and stable throughout the reaction. [Pg.42]

The a-osmiumdiazo compound 91 decomposes in a thermal reaction to yield the metallacyclic complex 93 (130). This resembles the electrophilic carbene insertion reaction forming OsCl(CO)2(PPh2C6H4CHCl) (PPh3) (77) (see Section V,D,2), and we suggest that a similar insertion reaction of an electrophilic, cationic osmium carbyne 92 is the key step in this transformation. An X-ray structure determination has confirmed the formulation of 93. [Pg.184]

Suggestive evidence for the protonation of diphenylcarbene was uncovered in 1963.10 Photolysis of diphenyldiazomethane in a methanolic solution of lithium azide produced benzhydryl methyl ether and benzhydryl azide in virtually the same ratio as that obtained by solvolysis of benzhydryl chloride. These results pointed to the diphenylcarbenium ion as an intermediate in the reaction of diphenylcarbene with methanol (Scheme 3). However, many researchers preferred to explain the O-H insertion reactions of diarylcarbenes in terms of electrophilic attack at oxygen (ylide mechanism),11 until the intervention of car-bocations was demonstrated by time-resolved spectroscopy (see Section III).12... [Pg.2]

Most of the carbenes examined in this study have more or less a carbenoid nature because they are generated from halogenated precursors and strong base. In this regard, it still remains as an intriguing problem to verify experimentally the higher electrophilicity and selectivity of carbenoids41,42 in comparison to those of free carbenes in the insertion reaction. [Pg.314]

E) Sigma-bond metathesis. Dihydrogen is observed to react with transition-metal-alkyl bonds even when the metal lacks lone pairs. In this case the reaction cannot be explained in terms of the oxidative-addition or reductive-elimination motif. Instead, we can view this reaction as a special type of insertion reaction whereby the ctmr bond pair takes the donor role of the metal lone pair and donates into the cthh antibond. When the M—R bonds are highly polarized as M+R, the process could also be described as a concerted electrophilic H2 activation in which R acts as the base accepting H+. [Pg.490]

Activation of a C-H bond requires a metallocarbenoid of suitable reactivity and electrophilicity.105-115 Most of the early literature on metal-catalyzed carbenoid reactions used copper complexes as the catalysts.46,116 Several chiral complexes with Ce-symmetric ligands have been explored for selective C-H insertion in the last decade.117-127 However, only a few isolated cases have been reported of impressive asymmetric induction in copper-catalyzed C-H insertion reactions.118,124 The scope of carbenoid-induced C-H insertion expanded greatly with the introduction of dirhodium complexes as catalysts. Building on initial findings from achiral catalysts, four types of chiral rhodium(n) complexes have been developed for enantioselective catalysis in C-H activation reactions. They are rhodium(n) carboxylates, rhodium(n) carboxamidates, rhodium(n) phosphates, and < // < -metallated arylphosphine rhodium(n) complexes. [Pg.182]

Low-valent, 18-electron (Fischer-type) carbene complexes with strong n-acceptors usually are electrophilic at the carbene carbon atom (C ). These complexes can undergo reactions similar to those of free carbenes, e.g. cyclopropanation or C-H insertion reactions. The carbene-like character of these complexes becomes more pronounced when electron-accepting groups are directly bound to C (Chapter 4), whereas electron-donating groups strongly attenuate the reactivity (Chapter 2). [Pg.104]

Carbene C-H (and Si-H, [695]) insertion is characteristic of electrophilic carbene complexes. In particular the insertion reactions of acceptor-substituted carbene complexes (Section 4.2) have become a valuable tool for organic synthesis. [Pg.122]

Calculations performed for cyclopropanation with Fischer-type carbene complexes [28] indicate that the electrophilic attack of the carbene complex at the alkene and the final ring closure are concerted. Extrapolation from this result to the C-H insertion reaction (in which a a-bond instead of a 7i-bond is cleaved) suggests that C-H bond cleavage and the formation of the new C-C and C-H bonds might also be concerted (Figure 3.38). [Pg.122]

However, with substrates prone to form carbocations, complete hydride abstraction from the alkane, followed by electrophilic attack of the carbocation on the metal-bound, newly formed alkyl ligand might be a more realistic picture of this process (Figure 3.38). The regioselectivity of C-H insertion reactions of electrophilic transition metal carbene complexes also supports the idea of a carbocation-like transition state or intermediate. [Pg.122]

Electrophilic carbene complexes generated from diazoalkanes and rhodium or copper salts can undergo 0-H insertion reactions and S-alkylations. These highly electrophilic carbene complexes can, moreover, also undergo intramolecular rearrangements. These reactions are characteristic of acceptor-substituted carbene complexes and will be treated in Section 4.2. [Pg.169]

Table 4.3. Intramolecular 1,3-C-H insertion reactions of electrophilic carbene complexes. Table 4.3. Intramolecular 1,3-C-H insertion reactions of electrophilic carbene complexes.
The first reports of N-H insertion reactions of electrophilic carbene complexes date back to 1952 [497], when it was found that aniline can be N-alkylated by diazoacetophenone upon treatment of both reactants with copper. A further early report is the attempt of Nicoud and Kagan [1178] to prepare enantiomerically pure a-amino acids by copper(I) cyanide-catalyzed decomposition of a-diazoesters in the presence of chiral benzylamines. Low enantiomeric excesses (< 26% ee) were obtained, however. [Pg.194]

S-Alkylation of thiols by carbene complexes can be a useful approach to a-(alkylthio)- or a-(arylthio)ketones, although few examples of intramolecular [975,1193] or intermolecular [497,1043,1230-1233] S-H bond insertion reactions of electrophilic carbene complexes have been reported. Yields are sometimes low, probably because of the poisoning of the catalyst by the thiol. Examples are given in Table 4.15. [Pg.197]

The kinetics and mechanism of iV-nitration reactions have been reviewed and the nitration of alkanes with nitronium hexafluorophosphate in CH2CI2 or EtN02 has been shown to involve direct electrophilic insertion of NO2+ into C-H and C-C a-bonds. ... [Pg.382]

Cyclic epoxides such as 124 can react in two ways with strong bases (a) via abstraction of a /3-proton to form allylic alcoholates 125 or (b) by deprotonation at the epoxide carbon atom forming the intermediate 126 and, after electrophilic substitution, the epoxides 128. If there is a suitable C—H bond in the vicinity of the C-Li moiety, intramolecular carbenoid insertion reactions to 127 may take place (equation 27) ° . ... [Pg.1082]

Intramolecular carbon-hydrogen insertion reactions have well known to be elTectively promoted by dirhodium(ll) catalysts [19-23]. Insertion into the y-position to form five-membered ring compounds is virtually exclusive, and in competitive experiments the expected reactivity for electrophilic carbene insertion (3°>2° 1°) is observed [49], as is heteroatom activation [50]. A recent theoretical treatment [51] confirmed the mechanistic proposal (Scheme 15.4) that C-C and C-H bond formation with the carbene carbon proceeds in a concerted fashion as the ligated metal dissociates [52]. Chemoselectivity is dependent on the catalyst ligands [53]. [Pg.348]


See other pages where Electrophilic insertion reactions is mentioned: [Pg.167]    [Pg.302]    [Pg.173]    [Pg.462]    [Pg.463]    [Pg.167]    [Pg.302]    [Pg.173]    [Pg.462]    [Pg.463]    [Pg.198]    [Pg.185]    [Pg.313]    [Pg.172]    [Pg.185]    [Pg.405]    [Pg.105]    [Pg.937]    [Pg.389]    [Pg.234]    [Pg.1221]   
See also in sourсe #XX -- [ Pg.462 , Pg.463 , Pg.464 ]




SEARCH



Electrophiles insertions

Electrophilic insertion

Insertion reactions

© 2024 chempedia.info