Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic aromatic protonation

Once formed it rapidly loses a proton restoring the aromaticity of the ring and giving the product of electrophilic aromatic substitution... [Pg.476]

Figure 12 3 adapts the general mechanism of electrophilic aromatic substitution to the nitration of benzene The first step is rate determining m it benzene reacts with nitro mum ion to give the cyclohexadienyl cation intermediate In the second step the aro maticity of the ring is restored by loss of a proton from the cyclohexadienyl cation... [Pg.477]

Complexation of bromine with iron(III) bromide makes bromine more elec trophilic and it attacks benzene to give a cyclohexadienyl intermediate as shown m step 1 of the mechanism (Figure 12 6) In step 2 as m nitration and sulfonation loss of a proton from the cyclohexadienyl cation is rapid and gives the product of electrophilic aromatic substitution... [Pg.480]

Section 12 2 The mechanism of electrophilic aromatic substitution involves two stages attack of the electrophile on the tt electrons of the ring (slow rate determining) followed by loss of a proton to restore the aromaticity of the ring... [Pg.508]

Electrophilic Aromatic Substitution. The Tt-excessive character of the pyrrole ring makes the indole ring susceptible to electrophilic attack. The reactivity is greater at the 3-position than at the 2-position. This reactivity pattern is suggested both by electron density distributions calculated by molecular orbital methods and by the relative energies of the intermediates for electrophilic substitution, as represented by the protonated stmctures (7a) and (7b). Stmcture (7b) is more favorable than (7a) because it retains the ben2enoid character of the carbocycHc ring (12). [Pg.84]

The reaction exhibits other characteristics typical of an electrophilic aromatic substitution. Examples of electrophiles that can effect substitution for silicon include protons and the halogens, as well as acyl, nitro, and sulfonyl groups. The feet that these reactions occur very rapidly has made them attractive for situations where substitution must be done under very mild conditions. ... [Pg.589]

Because of Us high polarity and low nucleophilicity, a trifluoroacetic acid medium is usually used for the investigation of such carbocationic processes as solvolysis, protonation of alkenes, skeletal rearrangements, and hydride shifts [22-24] It also has been used for several synthetically useful reachons, such as electrophilic aromatic substitution [25], reductions [26, 27], and oxidations [28] Trifluoroacetic acid is a good medium for the nitration of aromatic compounds Nitration of benzene or toluene with sodium nitrate in trifluoroacetic acid is almost quantitative after 4 h at room temperature [25] Under these conditions, toluene gives the usual mixture of mononitrotoluenes in an o m p ratio of 61 6 2 6 35 8 A trifluoroacetic acid medium can be used for the reduction of acids, ketones, and alcohols with sodium borohydnde [26] or triethylsilane [27] Diary Iketones are smoothly reduced by sodium borohydnde in trifluoroacetic acid to diarylmethanes (equation 13)... [Pg.946]

Despite the synthetic utility of this transformation, nearly eighty years elapsed between the discovery of the Bischler-Napieralski reaction and the first detailed studies of its mechanism. " Early mechanistic proposals regarding the Bischler-Napieralski reaction involved protonation of the amide oxygen by traces of acid present in P2O5 or POCI3 followed by electrophilic aromatic substitution to provide intermediate 5, which upon dehydration would afford the observed product 2. However, this proposed mechanism fails to account for the formation of several side products that are observed under these conditions vide infra), and is no longer favored. [Pg.376]

Under acidic conditions, imine 12 is protonated to give the iminium ion 13 which undergoes an electrophilic aromatic substitution reaction to form the new carbon-carbon bond. Rapid loss of a proton and concomitant re-aromatization gives the tetrahydroisoquinoline 14. [Pg.470]

In a first reaction step the formaldehyde 2 is protonated, which increases its reactivity for the subsequent electrophilic aromatic substitution at the benzene ring. The cationic species 4 thus formed loses a proton to give the aromatic hydroxymethyl derivative 5, which further reacts with hydrogen chloride to yield the chloromethylated product 3 ... [Pg.46]

Protonation of 2-methylpropene gives the tert-butyl cation, which carries out an electrophilic aromatic substitution reaction. [Pg.1267]

Novolacs are prepared with an excess of phenol over formaldehyde under acidic conditions (Fig. 7.6). A methylene glycol is protonated by an acid from the reaction medium, which then releases water to form a hydroxymethylene cation (step 1 in Fig. 7.6). This ion hydroxyalkylates a phenol via electrophilic aromatic substitution. The rate-determining step of the sequence occurs in step 2 where a pair of electrons from the phenol ring attacks the electrophile forming a car-bocation intermediate. The methylol group of the hydroxymethylated phenol is unstable in the presence of acid and loses water readily to form a benzylic carbo-nium ion (step 3). This ion then reacts with another phenol to form a methylene bridge in another electrophilic aromatic substitution. This major process repeats until the formaldehyde is exhausted. [Pg.378]

Aromatic compounds react with mercuric salts to give arylmercury compounds.69 Mercuric acetate or mercuric trifluoroacetate are the usual reagents.70 The reaction shows substituent effects that are characteristic of electrophilic aromatic substitution.71 Mercuration is one of the few electrophilic aromatic substitutions in which proton loss from the a complex is rate determining. Mercuration of benzene shows an isotope effect kB/kD = 6,72 which indicates that the [Pg.1026]

Except for these studies of their protonation behavior, almost the only other aspect of the chemistry of sulfonic acids that has been investigated to any extent from a mechanistic point of view is the desulfonation of aromatic sulfonic acids or sulfonates. Since this subject has been well reviewed by Cerfontain (1968), and since the reaction is really more of interest as a type of electrophilic aromatic substitution than as sulfur chemistry, we shall not deal with it here. One should note that the mechanism of formation of aromatic sulfonic acids by sulfonation of aromatic hydrocarbons has also been intensively investigated, particularly by Cerfontain and his associates, and several... [Pg.133]

In considering quantitatively the response of these groups to high electron-demand there are certain caveats. In the first place it must be remembered that amino and related groups are liable to be protonated in the kind of media often used for studying electrophilic aromatic substitution. The observed substituent effect will then be that of the positive pole. Secondly, the straightforward application of the tr+ scale to electron-demanding reactions is not necessarily appropriate. It may well be that some form of multiparameter treatment is needed, perhaps the Yukawa-Tsuno equation (Section II.B). [Pg.521]

We thought it preferable not to include in the discussion the electrophilic aromatic photosubstitution since well-studied examples 3ie still scarce (proton-deuteron and proton-triton exchange in acidic media protodeboronation). From our experience we have the feeling that many electrophiles are very efficient quenchers and that moreover it is not easy to choose systems where the concentrations of the potentially reacting electrophiles can be made high enough to react efficiently with the short-lived excited species. [Pg.261]

As a simple example, note that the major products obtained as a result of addition of HBr to the alkenes shown below are not always those initially expected. For the first alkene, protonation produces a particularly favourable carbocation that is both tertiary and benzylic (see Section 6.2.1) this then accepts the bromide nucleophile. In the second alkene, protonation produces a secondary alkene, but hydride migration then leads to a more favourable benzylic carbocation. As a result, the nucleophile becomes attached to a carbon that was not part of the original double bond. Further examples of carbocation rearrangements will be met under electrophilic aromatic substitution (see Section 8.4.1). [Pg.296]

The synthesis of DDT is a good example of an electrophilic aromatic substitution. The chloral is protonated and attacks the aromatic ring to generate a carbocation. Loss of a proton regenerates the aromatic ring. [Pg.367]

Phenol-formaldehyde prepolymers, referred to as novolacs, are obtained by using a ratio of formaldehyde to phenol of 0.75-0.85 1, sometimes lower. Since the reaction system is starved for formaldehyde, only low molecular weight polymers can be formed and there is a much narrower range of products compared to the resoles. The reaction is accomplished by heating for 2 1 h at or near reflux temperature in the presence of an acid catalyst. Oxalic and sulfuric acids are used in amounts of 1-2 and <1 part, respectively, per 100 parts phenol. The polymerization involves electrophilic aromatic substitution, first by hydroxymethyl carboca-tion and subsequently by benzyl carbocation—each formed by protonation of OH followed by loss of water. There is much less benzyl ether bridging between benzene rings compared to the resole prepolymers. [Pg.124]

A nucleophilic attack of an N-tethered phenethyl substituent is shown in Scheme 50. The protonated thiazine ring brings about an intramolecular electrophilic aromatic substitution on the aryl substituent, whether this is a phenyl <1992CHE832> or a veratryl ring <1980JHC449>. [Pg.649]

These equations show the general theoretical basis for the empirical order of rate constants given earlier for electrophilic attack on an aromatic ligand L, its metal complex ML, and its protonated form HL, one finds kt > n > hl. Conflicting reports in the literature state that coordination can both accelerate electrophilic aromatic substitution (30) and slow it down enormously (2). In the first case the rates of nitration of the diprotonated form of 0-phenanthroline and its Co(III) and Fe(III) complexes were compared. Here coordination prevents protonation in the mixed acid medium used for nitration and kML > h2l. In the second case the phenolate form of 8-hydroxyquinoline-5-sulfonic acid and its metal chelates were compared. The complexes underwent iodination much more slowly, if at all, and kL > kML ... [Pg.160]


See other pages where Electrophilic aromatic protonation is mentioned: [Pg.223]    [Pg.555]    [Pg.566]    [Pg.553]    [Pg.194]    [Pg.458]    [Pg.389]    [Pg.66]    [Pg.675]    [Pg.53]    [Pg.26]    [Pg.117]    [Pg.359]    [Pg.897]    [Pg.22]    [Pg.243]    [Pg.84]    [Pg.154]    [Pg.713]    [Pg.646]    [Pg.109]    [Pg.326]    [Pg.501]   
See also in sourсe #XX -- [ Pg.292 ]

See also in sourсe #XX -- [ Pg.292 ]




SEARCH



Aromatic protons

Electrophiles protonation

Electrophilic aromatic substitution proton exchange

Electrophilic aromatic substitution reactions direct protonation

Proton exchange by electrophilic aromatic substitution

© 2024 chempedia.info