Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronically conductive polymers voltammetry

FIGURE 18.2 Typical cyclic voltammetry (CV) corresponding to redox switching of electronically conducting polymers (ECPs). [Pg.756]

Bilayer and trilayer actuators Characterizations of Electrochemical cell Experimental procedure Materials Conducting polymers (CPs) Liquid electrolyte Open air Cyclic voltammetry Dibutyltin dilaurate Electronic conducting polymers (ECPs) Interpenetrating polymer network (IPN) Poly (3,4-ethylenedioxythiophene) (PEDOT) Polypyrrole (PPY) Actuation mechanism of Electrogeneration of Electropolymerization of pyrrole monomer Oxidation and reduction reaction of Polyvinylidene fluoride (PVDF) Solid polymer electrolyte (SPE) membrane Force characterizations IPNs Load curves and metrics PVDF membrane Strain characterizations... [Pg.414]

The electrochemistry of a polymer-modified electrode is determined by a combination of thermodynamics and the kinetics of charge-transfer and transport processes. Thermodynamic aspects are highlighted by cyclic voltammetry, while kinetic aspects are best studied by other methods. These methods will be introduced here, with the emphasis on how they are used to measure the rates of electron and ion transport in conducting polymer films. Charge transport in electroactive films in general has recently been reviewed elsewhere.9,11... [Pg.567]

In situ electron transport measurements on conducting polymers are commonly made by using a pair of parallel-band electrodes bridged by the polymer [Fig. 9(A)].141142 Other dual-electrode techniques in which the polymer film is sandwiched between two electrodes [Fig. 9(B)],139,140 rotating-disk voltammetry [Fig. 9(C)],60,143 impedance spectroscopy,144,145 chronoamperometry,146 and chronopotentiometry147 have also been used. [Pg.568]

Cyclic voltammetry was performed with the ADH-NAD-MB/polypyrrole electrode in 0.1 M phosphate buffer (pH 8.5) at a scan rate of 5 mV s l. The corresponding substrate of ADH caused the anodic current at +0.35 V vs. Ag/AgCl to increase. These results suggest a possible electron transfer from membrane-bound ADH to the electrode through membrane-bound NAD and MB with the help of the conductive polymer of polypyrrole. [Pg.352]

In all cases, the films were obtained by oxidative electropolymerization of the cited substituted complexes from organic or aqueous solutions. The mechanism of metalloporphyrin Him formation was suggested to be a radical-cation induced polymerization of the substituents on the periphery of the macrocycle. As it was reported for the case of polypyrrole-based materials ", cyclic voltammetry and UV-visible spectroscopy with optically transparent electrodes were extensively used to provide information on the polymeric films (electroactivity, photometric properties, chemical stability, conductivity, etc.). Based on the available data, it appears that the electrochemical polymerization of the substituted complexes leads to well-structured multilayer films. It also appears that the low conductivity of the formed films, combined with the cross-linking effects due to the steric hindrance induced by the macrocyclic Ugand, confers to these materials a certain number of limitations such as the limited continuous growth of the polymers due to the absence of electronic conductivity of the films. Indeed, the charge transport in many of these films acts only by electron-hopping process between porphyrin sites. [Pg.384]

Table 20.8 contains a compilation of literature entries on the voltammetry of conducting polymer films. The scope of these studies is similar to that of the transient experiments discussed in Section V.A in terms of the types of electrodes and media employed. Both cyclic and hydrodynamic voltammetry have been used as shown in Table 20.8. Other aspects under discussion include the mathematic modeling of cyclic voltammo-grams [277,278], the occurrence and origin of prewaves in the cyclic voltammograms [319], the use of very fast scan rates [220], structural relaxation effects and their manifestation in voltammetry [304,317,320], the inactivation of polymer electroactivity when driven to extreme potentials, and the so-called polythiophene paradox [225,226,306,321]. Unusual media and cryogenic temperatures have also been employed for the volta-mmetric observation of doping phenomena [322-325]. Dual-electrode voltammetry (Section II.1) has been performed on derivatized polypyrrole [290] in an attempt to deconvolute the electronic and ionic contributions to the overall conductivity of the sample as a function of electrode potential. Finally, voltammetry has been carried out in the solid state , i.e., in the absence of electrolyte solutions [215,323]. Table 20.8 contains a compilation of literature entries on the voltammetry of conducting polymer films. The scope of these studies is similar to that of the transient experiments discussed in Section V.A in terms of the types of electrodes and media employed. Both cyclic and hydrodynamic voltammetry have been used as shown in Table 20.8. Other aspects under discussion include the mathematic modeling of cyclic voltammo-grams [277,278], the occurrence and origin of prewaves in the cyclic voltammograms [319], the use of very fast scan rates [220], structural relaxation effects and their manifestation in voltammetry [304,317,320], the inactivation of polymer electroactivity when driven to extreme potentials, and the so-called polythiophene paradox [225,226,306,321]. Unusual media and cryogenic temperatures have also been employed for the volta-mmetric observation of doping phenomena [322-325]. Dual-electrode voltammetry (Section II.1) has been performed on derivatized polypyrrole [290] in an attempt to deconvolute the electronic and ionic contributions to the overall conductivity of the sample as a function of electrode potential. Finally, voltammetry has been carried out in the solid state , i.e., in the absence of electrolyte solutions [215,323].
Fig. 37.2 (A) Schematic illustration showing a conductive polymer/high-temperature superconductor sandwich device. To create such a structure, a YBa2Cu307-s thin film is deposited onto a MgO(lOO) substrate via laser ablation, a microbridge is patterned on the central portion of the film, and a conductive polymer layer is deposited electrochemi-cally onto the microbridge area. (B) Cyclic voltammetry (5 mV/s) recorded at room temperature in 0.1 M Et4NBp4/ acetonitrile for a YBa2Cu307-s thin-film electrode assembly coated with polypyrrole. Well-behaved voltammetry is observed, indicating that electronic charge flows readily between the superconductor and the polymer layer. (Adapted from Ref. 11.)... Fig. 37.2 (A) Schematic illustration showing a conductive polymer/high-temperature superconductor sandwich device. To create such a structure, a YBa2Cu307-s thin film is deposited onto a MgO(lOO) substrate via laser ablation, a microbridge is patterned on the central portion of the film, and a conductive polymer layer is deposited electrochemi-cally onto the microbridge area. (B) Cyclic voltammetry (5 mV/s) recorded at room temperature in 0.1 M Et4NBp4/ acetonitrile for a YBa2Cu307-s thin-film electrode assembly coated with polypyrrole. Well-behaved voltammetry is observed, indicating that electronic charge flows readily between the superconductor and the polymer layer. (Adapted from Ref. 11.)...
If the film is nonconductive, the ion must diffuse to the electrode surface before it can be oxidized or reduced, or electrons must diffuse (hop) through the film by self-exchange, as in regular ionomer-modified electrodes.9 Cyclic voltammograms have the characteristic shape for diffusion control, and peak currents are proportional to the square root of the scan speed, as seen for species in solution. This is illustrated in Fig. 21 (A) for [Fe(CN)6]3 /4 in polypyrrole with a pyridinium substituent at the 1-position.243 This N-substituted polypyrrole does not become conductive until potentials significantly above the formal potential of the [Fe(CN)6]3"/4 couple. In contrast, a similar polymer with a pyridinium substituent at the 3-position is conductive at this potential. The polymer can therefore mediate electron transport to and from the immobilized ions, and their voltammetry becomes characteristic of thin-layer electrochemistry [Fig. 21(B)], with sharp symmetrical peaks that increase linearly with increasing scan speed. [Pg.589]

The presence of redox catalysts in the electrode coatings is not essential in the c s cited alx)ve because the entrapped redox species are of sufficient quantity to provide redox conductivity. However, the presence of an additional redox catalyst may be useful to support redox conductivity or when specific chemical redox catalysis is used. An excellent example of the latter is an analytical electrode for the low level detection of alkylating agents using a vitamin 8,2 epoxy polymer on basal plane pyrolytic graphite The preconcentration step involves irreversible oxidative addition of R-X to the Co complex (see Scheme 8, Sect. 4.4). The detection by reductive voltammetry, in a two electron step, releases R that can be protonated in the medium. Simultaneously the original Co complex is restored and the electrode can be re-used. Reproducible relations between preconcentration times as well as R-X concentrations in the test solutions and voltammetric peak currents were established. The detection limit for methyl iodide is in the submicromolar range. [Pg.76]


See other pages where Electronically conductive polymers voltammetry is mentioned: [Pg.70]    [Pg.71]    [Pg.925]    [Pg.376]    [Pg.66]    [Pg.5]    [Pg.561]    [Pg.8]    [Pg.66]    [Pg.408]    [Pg.145]    [Pg.385]    [Pg.45]    [Pg.438]    [Pg.419]    [Pg.2515]    [Pg.39]    [Pg.371]    [Pg.45]    [Pg.228]    [Pg.850]    [Pg.225]    [Pg.114]    [Pg.415]    [Pg.418]    [Pg.26]    [Pg.209]    [Pg.792]    [Pg.367]    [Pg.104]    [Pg.220]    [Pg.91]    [Pg.43]    [Pg.448]    [Pg.236]    [Pg.116]    [Pg.345]    [Pg.213]   
See also in sourсe #XX -- [ Pg.125 , Pg.132 ]




SEARCH



Conductance electronic

Conducting electrons

Conducting polymer, electron-conductive

Conduction electrons

Conductivity electronically conducting polymer

Conductivity: electronic

Cyclic voltammetry electronically conducting polymers

Electron conductance

Electron conductivity

Electron-conducting polymer

Electronic conduction

Electronic conductivity polymers, conducting

Electronically conducting

Electronically conducting polymers

Electronics conduction

Electronics, conducting polymers

Polymer electronic conducting polymers

Polymer electronics

Polymers electron conduction

© 2024 chempedia.info