Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic structures derivative crystal

X-ray powder patterns showed that the product of this reaction is indeed isomorphous with Zn2Mo308 and hence is the desired 7-electron cluster derivative. Unfortunately single crystals for a complete structure determination have not been obtained. Subsequent work (17) however showed that additional cations could... [Pg.265]

It is important to realize that each of the electronic-structure methods discussed above displays certain shortcomings in reproducing the correct band structure of the host crystal and consequently the positions of defect levels. Hartree-Fock methods severely overestimate the semiconductor band gap, sometimes by several electron volts (Estreicher, 1988). In semi-empirical methods, the situation is usually even worse, and the band structure may not be reliably represented (Deak and Snyder, 1987 Besson et al., 1988). Density-functional theory, on the other hand, provides a quite accurate description of the band structure, except for an underestimation of the band gap (by up to 50%). Indeed, density-functional theory predicts conduction bands and hence conduction-band-derived energy levels to be too low. This problem has been studied in great detail, and its origins are well understood (see, e.g., Hybertsen and Louie, 1986). To solve it, however, requires techniques of many-body theory and carrying out a quasi-particle calculation. Such calculational schemes are presently prohibitively complex and too computationally demanding to apply to defect calculations. [Pg.609]

It is well known that crystal and electronic structures are interdependent and define the reactivity of chemical substances. In Section 1.4.2, it was noted that copper-porphyrin complex gives cation-radicals with significant reactivity at the molecular periphery. This reactivity appears to be that of nucleophilic attack on this cation-radical, which belongs to n-type. The literature sources note, however, some differences in the reactivity of individual positions. A frequently observed feature in these n-cation derivatives is the appearance of an alternating bond distance pattern in the inner ring of porphyrin consistent with a localized structure rather than the delocalized structure usually ascribed to cation-radical. A pseudo Jahn-Teller distortion has been named as a possible cause of this alternation, and it was revealed by X-ray diffraction method (Scheidt 2001). [Pg.239]

So far we have assumed that the electronic structure of the crystal consists of one band derived, in our approximation, from a single atomic state. In general, this will not be a realistic picture. The metals, for example, have a complicated system of overlapping bands derived, in our approximation, from several atomic states. This means that more than one atomic orbital has to be associated with each crystal atom. When this is done, it turns out that even the equations for the one-dimensional crystal cannot be solved directly. However, the mathematical technique developed by Baldock (2) and Koster and Slater (S) can be applied (8) and a formal solution obtained. Even so, the question of the existence of otherwise of surface states in real crystals is diflBcult to answer from theoretical considerations. For the simplest metals, i.e., the alkali metals, for which a one-band model is a fair approximation, the problem is still difficult. The nature of the difficulty can be seen within the framework of our simple model. In the first place, the effective one-electron Hamiltonian operator is really different for each electron. If we overlook this complication and use some sort of mean value for this operator, the operator still contains terms representing the interaction of the considered electron with all other electrons in the crystal. The Coulomb part of this interaction acts in such a way as to reduce the effect of the perturbation introduced by the existence of a free surface. A self-consistent calculation is therefore essential, and the various parameters in our theory would have to be chosen in conformity with the results of such a calculation. [Pg.6]

The crystal is placed in an X-ray diffraction apparatus (camera or diffractometer) where the X-ray pattern is recorded photographically or by measuring the intensity of the X-rays electronically. The resulting intensity values are used to obtain the observed structure factors which constitute the fundamental experimental data from which the crystal and molecular structures are derived. The structure derived is used for calculating structure factors that are compared with the experimental structure factors during the period when the derived structure is being modified to fit the experimental data. [Pg.54]

A considerable number of crystal structures of type I copper sites in proteins are now available, so there may be no particular advantage in the synthetic model approach to prove the coordination structure of type I. Yet, inorganic chemists still have an opportunity to utilize the spectroscopic and structural bases established by model studies to understand the precise electronic structure of type I copper. One should keep in mind that the generally accepted interpretation derived from spectroscopic and theoretical studies on the proteins (47-49) has not been definitely proved experimentally. A systematic comparison of a series of copper(II) thiolate complexes having an unusual distorted coordination structure is required for a conclusive description of the electronic structure of the type I copper. The synthetic approach is ultimately the most adequate way to clarify how the ligand donors and geometry affect the electronic property and function of type I copper as an electron transfer center. [Pg.7]


See other pages where Electronic structures derivative crystal is mentioned: [Pg.126]    [Pg.226]    [Pg.299]    [Pg.31]    [Pg.188]    [Pg.156]    [Pg.63]    [Pg.147]    [Pg.240]    [Pg.248]    [Pg.281]    [Pg.87]    [Pg.270]    [Pg.564]    [Pg.918]    [Pg.22]    [Pg.327]    [Pg.518]    [Pg.458]    [Pg.298]    [Pg.436]    [Pg.98]    [Pg.79]    [Pg.257]    [Pg.179]    [Pg.114]    [Pg.483]    [Pg.53]    [Pg.1038]    [Pg.375]    [Pg.23]    [Pg.201]    [Pg.61]    [Pg.2]    [Pg.511]    [Pg.243]    [Pg.595]    [Pg.5]    [Pg.80]    [Pg.317]    [Pg.103]    [Pg.13]    [Pg.35]   
See also in sourсe #XX -- [ Pg.202 , Pg.203 ]




SEARCH



Crystals derivative

Derivative Structure

Electron—crystal

Structural derivation

© 2024 chempedia.info