Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic structure reaction path techniques

Atmospheric molecules such as 02, Os, NO and NOz are inherently reactive because of the free radical nature of their electronic structures. In addition, there are literally hundreds of free radical species produced in the atmosphere via either photochemical or dark reactions of various hydrocarbons [1,2,27]. Clearly, an important prerequisite to laboratory studies of atmospheric chemistry is the ability to generate key free radical species in a clean fashion. Some representative techniques for generating the major free radical reactants, i.e., HO, HOO, R, RO and ROO (R = alkyl or other organic group), in combination with a long path IR absorption cell-chemical reactor are described below. [Pg.73]

In the last few years, the polarizable continuum model for the study of solvation has been extended to consider multideterminantal wavefunctions. Such novel techniques allow the study of the most important solvent effects on chemical reactions. In this context, the valence bond theory provides a way to analyze such effects through the transcription of the, generally, complicated multiconfigurational wavefunctions into sums of few selected classical structures, which are, in fact, more useful to understand the electron distribution rearrangement along a reaction path. In this chapter, the valence bond analysis of CASSCF wavefunctions calculated for chemical reactions in solution is discussed in details. By way of example, the results for some basic chemical processes are also reported. [Pg.415]

Predictions can be made about the suitability of different system trajectories on the basis of orbital symmetry conservation rules (207). The most suitable trajectory is an approximation to the reaction path of the reaction under study. The rules can also yield information about the possible structure of the activated complex. The correlation diagram technique has been improved in a series of books by Epiotis et al. (214-216). The method is based on self-consistent field-configuration interaction or valence bond (SCF-CI or VB) (including ionic structures) wave functions. Applications on reactions in the ground states as well as in the excited electronic states are impressive however, the price to be paid for the predictions seems to be rather high. [Pg.273]

Further developments of these ideas took place in computational structural biology, where nonphysical local transformations were implemented within the framework of thermodynamic cycles. These nonphysical transformations were introduced in 1981 by Warshel, who studied ionization in acidic residues in proteins pK calculations). Although the cycle included nonphysical transformations, they were not carried out by the perturbation technique. A year later Warshel used the perturbation method together with umbrella sampling to study the solvation free energy contribution to an electron transfer reaction coordinate, using two spheres for donor and acceptor in water the perturbation, however, was performed along a physical path. Warshel also modeled some enzymatic reactions that involve nonphysical processes. ... [Pg.31]

Integrals of Electron Repulsion Molecular Magnetic Properties Mpller-Plesset Perturbation Theory NMR Chemical Shift Computation Ab Initio Nonadiabatic Derivative Couplings Normal Modes Reaction Path Following Spectroscopy Computational Methods Time-dependent Multi-configurational Hartree Method Transition Structure Optimization Techniques. [Pg.1169]

Since there are very few energy surfaces which have been completely characterized by an exhaustive search for minima and TSs, comparisons of different optimization methods on the same surface are scarce. The interpolation technique.s, especially those which try to map the complete reaction path, tend to have somewhat higher computational requirements than the local methods. Consequently, interpolation methods have primarily been used in connection with force field and semiempirical electronic structure methods, while local methods have been associated mainly with ab initio-type calculations. [Pg.3122]

The second most apparent limitation on studies of surface reactivity, at least as they relate to catalysis, is the pressure range in which such studies are conducted. The 10 to 10 Torr pressure region commonly used is imposed by the need to prevent the adsorption of undesired molecules onto the surface and by the techniques employed to determine surface structure and composition, which require relatively long mean free paths for electrons in the vacuum. For reasons that are detailed later, however, this so-called pressure gap may not be as severe a problem as it first appears. There are many reaction systems for which the surface concentration of reactants and intermediates found on catalysts can be duplicated in surface reactivity studies by adjusting the reaction temperature. For such reactions the mechanism can be quite pressure insensitive, and surface reactivity studies will prove very useful for greater understanding of the catalytic process. [Pg.3]

XPS or AES is extensively used not only to indicate the cleanliness of the sample before transfer, but also to indicate the presence of adsorbates and their oxidation states following electrochemical experiments and transfer back into the UHV environment. In the case of model platinum-based electrocatalysts, the electron spectroscopies have been used to estimate the coverage of the adsorbate metal atoms or the alloy composition. In the case of alloys, or the nucleation and growth of metal adsorbate structures, the techniques give only the mean concentrations averaged over a depth determined by the inelastic mean free path of the emitted electrons. Adsorption and reaction at surfaces often depend on the... [Pg.198]


See other pages where Electronic structure reaction path techniques is mentioned: [Pg.392]    [Pg.52]    [Pg.328]    [Pg.110]    [Pg.175]    [Pg.44]    [Pg.108]    [Pg.187]    [Pg.209]    [Pg.228]    [Pg.182]    [Pg.243]    [Pg.625]    [Pg.346]    [Pg.225]    [Pg.57]    [Pg.243]    [Pg.346]    [Pg.276]    [Pg.46]    [Pg.127]    [Pg.43]    [Pg.465]    [Pg.83]    [Pg.15]    [Pg.523]    [Pg.2111]    [Pg.249]    [Pg.141]    [Pg.165]    [Pg.171]    [Pg.34]    [Pg.151]    [Pg.408]    [Pg.48]    [Pg.255]    [Pg.21]    [Pg.115]    [Pg.425]    [Pg.175]   


SEARCH



Electron paths

Electron techniques

Electronic structure techniques

Reaction path

Reaction techniques

© 2024 chempedia.info