Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen electronic structure

KEYWORDS electronic structure, hydrogen storage alloys hydride stability, alloy design... [Pg.193]

Naturally, the ability of a molecule to solvate or associate is intimately linked to its electronic structure. Hydrogen bonding can lead to either of these behaviors. An example of solvation is given by a mixture of chloroform and acetone. Hydrogen bonding causes the unlike molecules to form a complex ... [Pg.229]

In our hydrogen molecule calculation in Section 2.4.1 the molecular orbitals were provided as input, but in most electronic structure calculations we are usually trying to calculate the molecular orbitals. How do we go about this We must remember that for many-body problems there is no correct solution we therefore require some means to decide whether one proposed wavefunction is better than another. Fortunately, the variation theorem provides us with a mechanism for answering this question. The theorem states that the... [Pg.71]

The concept of chemical periodicity is central to the study of inorganic chemistry. No other generalization rivals the periodic table of the elements in its ability to systematize and rationalize known chemical facts or to predict new ones and suggest fruitful areas for further study. Chemical periodicity and the periodic table now find their natural interpretation in the detailed electronic structure of the atom indeed, they played a major role at the turn of the century in elucidating the mysterious phenomena of radioactivity and the quantum effects which led ultimately to Bohr s theory of the hydrogen atom. Because of this central position it is perhaps not surprising that innumerable articles and books have been written on the subject since the seminal papers by Mendeleev in 1869, and some 700 forms of the periodic table (classified into 146 different types or subtypes) have been proposed. A brief historical survey of these developments is summarized in the Panel opposite. [Pg.20]

It can now be seen that there is a direct and simple correspondence between this description of electronic structure and the form of the periodic table. Hydrogen, with 1 proton and 1 electron, is the first element, and, in the ground state (i.e. the state of lowest energy) it has the electronic configuration ls with zero orbital angular momentum. Helium, 2 = 2, has the configuration Is, and this completes the first period since no... [Pg.22]

How many different enolates may arise from deprotonation of 2,4-pentanedione Draw Lewis structures for each, and predict which is likely to be the most stable. Check your conclusions by examining the energies of the different possible enolates (enolate A, B...). Is the most stable enolate that derived from deprotonation of the most electron-poor hydrogen Compare the electrostatic potential maps of the anions with each other and with your Lewis structures. Revise your drawings to be consistent with the maps. Why is one of the enolates preferred over the others ... [Pg.163]

From electronic structure theory it is known that the repulsion is due to overlap of the electronic wave functions, and furthermore that the electron density falls off approximately exponentially with the distance from the nucleus (the exact wave function for the hydrogen atom is an exponential function). There is therefore some justification for choosing the repulsive part as an exponential function. The general form of the Exponential - R Ey w function, also known as a ""Buckingham " or ""Hill" type potential is... [Pg.19]

A further complication arises out of the fact that of all the orientations discussed only one, 5-R-3-Y, does not involve a vicinal relationship between at least two of the three structural features—substituent, side-chain, and heteroatom. In the cases of 4-R- and 5-R-2-Y the problem of vicinal relations appears not too serious, since this relation is equivalent to the problem of the constant ortho substituent. For this situation it was shown that the constant ort u) substituent, i.e., in this case the heteroatom, may make a contribution to the substituent-independent term (logA °) but generally leaves the reaction constant (p) unaffected. Where the substituent, however, is alpha to the heteroatom it appears likely that its electronic structure, and hence its <7-values, may be substantially affected. This appears particularly likely for large substituents and especially for those which can form a hydrogen bond with the heteroatom, such as CO OH. [Pg.237]

The hydrogen atom, containing a single electron, has played a major role in the development of models of electronic structure. In 1913 Niels Bohr (1885-1962), a Danish physicist, offered a theoretical explanation of the atomic spectrum of hydrogen. His model was based largely on classical mechanics. In 1922 this model earned him the Nobel Prize in physics. By that time, Bohr had become director of the Institute of Theoretical Physics at Copenhagen. There he helped develop the new discipline of quantum mechanics, used by other scientists to construct a more sophisticated model for the hydrogen atom. [Pg.137]

In 1926 Erwin Schrodinger (1887-1961), an Austrian physicist, made a major contribution to quantum mechanics. He wrote down a rather complex differential equation to express the wave properties of an electron in an atom. This equation can be solved, at least in principle, to find the amplitude (height) of the electron wave at various points in space. The quantity ip (psi) is known as the wave function. Although we will not use the Schrodinger wave equation in any calculations, you should realize that much of our discussion of electronic structure is based on solutions to that equation for the electron in the hydrogen atom. [Pg.139]

These examples illustrate the principle that atoms in covalently bonded species tend to have noble-gas electronic structures. This generalization is often referred to as the octet rule. Nonmetals, except for hydrogen, achieve a noble-gas structure by sharing in an octet of electrons (eight). Hydrogen atoms, in molecules or polyatomic ions, are surrounded by a duet of electrons (two). [Pg.168]

This review aims to present an account of the catalytic properties of palladium and nickel hydrides as compared with the metals themselves (or their a-phase solid solutions with hydrogen). The palladium or nickel alloys with the group lb metals, known to form /8-phase hydrides, will be included. Any attempts at commenting on the conclusions derived from experimental work by invoking the electronic structure of the systems studied will of necessity be limited by our as yet inadequate knowledge concerning the electronic structure of the singular alloys, which the hydrides undoubtedly are. [Pg.246]

Arguments based mainly on bond energies5) and interatomic distances6) have recently led to the determination of the normal electronic structures of a number of molecules. The hydrogen halides resonate between the... [Pg.158]

Activation methods can be divided into two groups. Activation by addition of selected metals (a few wt%), mainly transition metals, e.g., fine powders of Fe, Ni, Co, Cr, Pt, Pd, etc. ", or chlorides of these metals when these are reducible to the metal by hydrogen during presintering. The mechanism of activation is not understood (surface tension, surface diffusion, etc.) but is related to the electronic structure of the metal additive. Activation by carbon is also effective. Alternatively, activation utilizes powders in a specially activated state, e.g., very fine (submicronic) powders. ... [Pg.301]


See other pages where Hydrogen electronic structure is mentioned: [Pg.445]    [Pg.458]    [Pg.445]    [Pg.458]    [Pg.29]    [Pg.141]    [Pg.182]    [Pg.31]    [Pg.760]    [Pg.60]    [Pg.59]    [Pg.31]    [Pg.24]    [Pg.26]    [Pg.50]    [Pg.50]    [Pg.65]    [Pg.271]    [Pg.37]    [Pg.166]    [Pg.102]    [Pg.619]    [Pg.251]    [Pg.285]    [Pg.286]    [Pg.484]    [Pg.154]    [Pg.157]    [Pg.11]    [Pg.20]    [Pg.158]    [Pg.182]    [Pg.232]    [Pg.316]    [Pg.2]    [Pg.194]    [Pg.31]   


SEARCH



Confined atoms, electronic structure hydrogen atom

Electronic Structures of Hydrogen Bonds

Electronic structures hydrogen storage alloys

Hydrogen atom electronic structure

Hydrogen bonds electronic structure calculations

Hydrogen electrons

Hydrogen structures

Hydrogenation structure

The Electronic Structure of Hydrogen

© 2024 chempedia.info