Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic states analysis

Again the parameters are derived by fitting the adiabatic form of the electronic part of the above Hamiltonian to the ab initio calculated energies of the three electronic states. Analysis of various coupling parameters revealed the importance of only 29... [Pg.303]

Final state analysis is where dynamical methods of evolving states meet the concepts of stationary states. By their definition, final states are relatively long lived. Therefore experiment often selects a single stationary state or a statistical mixture of stationary states. Since END evolution includes the possibility of electronic excitations, we analyze reaction products in terms of rovibronic states. [Pg.245]

Photoluminescence is a well-established and widely practiced tool for materials analysis. In the context of surface and microanalysis, PL is applied mostly qualitatively or semiquantitatively to exploit the correlation between the structure and composition of a material system and its electronic states and their lifetimes, and to identify the presence and type of trace chemicals, impurities, and defects. [Pg.383]

The self-consistent field function for atoms with 2 to 36 electrons are computed with a minimum basis set of Slater-type orbitals. The orbital exponents of the atomic orbitals are optimized so as to ensure the energy minimum. The analysis of the optimized orbital exponents allows us to obtain simple and accurate rules for the 1 s, 2s, 3s, 4s, 2p, 3p, 4p and 3d electronic screening constants. These rules are compared with those proposed by Slater and reveal the need for the screening due to the outside electrons. The analysis of the screening constants (and orbital exponents) is extended to the excited states of the ground state configuration and the positive ions. [Pg.159]

LennarD-Jones, J. E., and Pople, J. A., Phil. Mag. 43, 581, Ser. 7, The spatial correlation of electrons in atoms and molecules. I. Helium and similar two-electron systems in their ground states. Analysis of in-out effect and angular effect. [Pg.332]

In 1999, the Klemperer group published experimental results from a dispersed fluorescence study of the linear and T-shaped Ar l2(X, v = 0) conformers to obtain information about the X- and B-state potentials of the complex and to gain insight into the photodissociation dynamics in the B electronic state [65]. In carrying out their analysis, they assumed that the linear and T-shaped conformers existed in a thermodynamic equilibrium, with the abundance of the linear conformer being three times that of the T-shaped conformer. In an effort to test the validity of the thermodynamic hypothesis Bastida, et al. [66], performed a... [Pg.393]

EXAFS analysis is a powerful spectroscopic method for structural analysis which has been extensively applied to the problem of structure determination in nanoparticles, and especially bimetallic nanoparticles [170-172]. The X-ray absorption spectrum of an element contains absorption edges corresponding to the excitation of electrons from various electronic states at energies characteristic of that element, i.e., K edges arise from the excitation of electrons from Is states, and LI, II, III edges from excitations from 2s, 2p 1/2, and 2p3/2 states. When the X-ray energy is increased above an edge, oscillations (fine... [Pg.63]

The principal idea of Volkenshtein, the founder of electronic theory of chemisorption, was that chemisorbed particle and solid body form a unified quantum mechanical system. During the analysis of such systems one should account for the change in electronic state of both adparticle and the adsorbent itself [9]. In other words, in this case adsorption provides for a chemical binding of molecules with adsorbent. [Pg.10]

The various contributions to the energy of a molecule were specified in Eq. (47). However, the fact that the electronic partition function was assumed to be equal to one should not be overlooked. In effect, the electronic energy was assumed to be equal to zero, that is, that the molecule remains in its ground electronic state. In the application of statistical mechanics to high-temperature systems this approximation is not appropriate. In particular, in the analysis of plasmas the electronic contribution to the energy, and thus to the partition function, must be included. [Pg.137]

In this section, we present a unified picture of the different electronic effects that combine to determine methyl rotor potentials in the S0, Sp and D0 electronic states of different substituted toluenes. Our approach is based on analysis of ab initio wavefunctions using the natural bond orbitals (NBOs)33 of Weinhold and cowork-ers. We will attempt to decompose the methyl torsional potential into two dominant contributions. The first is repulsive steric interactions, which are important only when an ortho substituent is present. The second is attractive donor-acceptor interactions between CH bond pairs and empty antibonding orbitals vicinal to the CH bonds. In the NBO basis, these attractive interactions dominate the barrier in ethane (1025 cm-1) and in 2-methylpropene (1010 cm-1) see Figure 3. By analogy, donor-acceptor attractions are important in toluenes whenever there is a substantial difference in bond order between the two ring CC bonds adjacent to the C-CH3 bond. Viewed the other way around, we can use the measured methyl rotor potential as a sensitive probe of local ring geometry. [Pg.176]


See other pages where Electronic states analysis is mentioned: [Pg.120]    [Pg.59]    [Pg.120]    [Pg.59]    [Pg.2860]    [Pg.2864]    [Pg.2935]    [Pg.214]    [Pg.215]    [Pg.517]    [Pg.402]    [Pg.317]    [Pg.22]    [Pg.282]    [Pg.342]    [Pg.347]    [Pg.25]    [Pg.340]    [Pg.27]    [Pg.153]    [Pg.349]    [Pg.25]    [Pg.388]    [Pg.231]    [Pg.31]    [Pg.171]    [Pg.4]    [Pg.160]   
See also in sourсe #XX -- [ Pg.317 ]

See also in sourсe #XX -- [ Pg.317 ]




SEARCH



Electron analysis

Electron nuclear dynamics , molecular systems, final-state analysis

Final-state analysis, electron nuclear dynamics

Rovibrational states, electron nuclear dynamics analysis

© 2024 chempedia.info